Optimization for Machine Learning CS-439

Lecture 8: Coordinate Descent

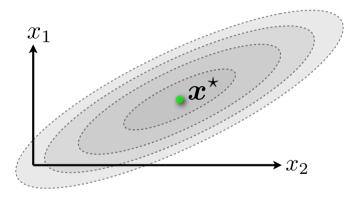
Nicolas Flammarion

EPFL - github.com/epfml/OptML_course

April 29, 2022

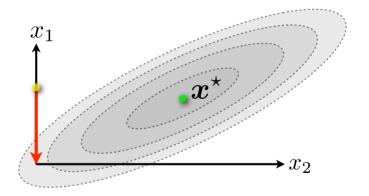
Goal: Find $\mathbf{x}^{\star} \in \mathbb{R}^d$ minimizing $f(\mathbf{x})$.

(Example: d = 2)



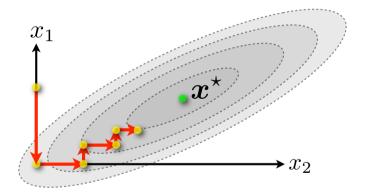
Idea: Update one coordinate at a time, while keeping others fixed.

Goal: Find $\mathbf{x}^* \in \mathbb{R}^d$ minimizing $f(\mathbf{x})$.



Idea: Update one coordinate at a time, while keeping others fixed.

Goal: Find $\mathbf{x}^* \in \mathbb{R}^d$ minimizing $f(\mathbf{x})$.



Idea: Update one coordinate at a time, while keeping others fixed.

Modify only one coordinate per step:

select
$$i_t \in [d]$$

 $\mathbf{x}_{t+1} := \mathbf{x}_t + \gamma \mathbf{e}_{i_t}$

Two main variants:

► Gradient-based step-size:

$$\mathbf{x}_{t+1} := \mathbf{x}_t - \frac{1}{L} \nabla_{i_t} f(\mathbf{x}_t) \, \mathbf{e}_{i_t}$$

► Exact coordinate minimization: solve the single-variable minimization $\underset{\gamma \in \mathbb{R}}{\operatorname{argmin}}_{\gamma \in \mathbb{R}} f(\mathbf{x}_t + \gamma \mathbf{e}_{i_t})$ in closed form.

Randomized Coordinate Descent

select
$$i_t \in [d]$$
 uniformly at random $\mathbf{x}_{t+1} := \mathbf{x}_t - \frac{1}{L} \nabla_{i_t} f(\mathbf{x}_t) \, \mathbf{e}_{i_t}$

► Faster convergence than gradient descent (if coordinate step is significantly cheaper than full gradient step)

Convergence Analysis

Assume coordinate-wise smoothness:

$$f(\mathbf{x} + \gamma \mathbf{e}_i) \le f(\mathbf{x}) + \gamma \nabla_i f(\mathbf{x}) + \frac{L}{2} \gamma^2 \qquad \forall \mathbf{x} \in \mathbb{R}^d, \ \forall \gamma \in \mathbb{R}, \ \forall i$$

Is equivalent to coordinate-wise Lipschitz gradient:

$$|\nabla_i f(\mathbf{x} + \gamma \mathbf{e}_i) - \nabla_i f(\mathbf{x})| \le L|\gamma|, \quad \forall \mathbf{x} \in \mathbb{R}^d, \ \forall \gamma \in \mathbb{R}, \ \forall i.$$

Additionally assume strong convexity

Convergence Analysis: Linear Rate

Theorem

Let f be coordinate-wise smooth with constant L, and strongly convex with parameter $\mu>0$. Then, coordinate descent with a step-size of 1/L,

$$\mathbf{x}_{t+1} := \mathbf{x}_t - \frac{1}{L} \nabla_{i_t} f(\mathbf{x}_t) \, \mathbf{e}_{i_t} \,.$$

when choosing the active coordinate i_t uniformly at random, has an expected linear convergence rate of

$$\mathbb{E}[f(\mathbf{x}_t) - f^*] \le \left(1 - \frac{\mu}{dL}\right)^t [f(\mathbf{x}_0) - f^*].$$

Convergence Proof

Proof.

Plugging the update rule, into the smoothness condition, we have

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} |\nabla_{i_t} f(\mathbf{x}_t)|^2.$$

Take expectation with respect to i_t :

$$\mathbb{E}\left[f(\mathbf{x}_{t+1})\right] \leq f(\mathbf{x}_t) - \frac{1}{2L}\mathbb{E}\left[|\nabla_{i_t} f(\mathbf{x}_t)|^2\right]$$

$$= f(\mathbf{x}_t) - \frac{1}{2L}\frac{1}{d}\sum_{i}|\nabla_{i} f(\mathbf{x}_t)|^2$$

$$= f(\mathbf{x}_t) - \frac{1}{2dL}\|\nabla f(\mathbf{x}_t)\|^2.$$

[Lemma: strongly convex f satisfy PL: $\frac{1}{2}\|\nabla f(\mathbf{x})\|^2 \geq \mu(f(\mathbf{x}) - f^\star) \ \forall \mathbf{x}$] Subtracting f^\star from both sides, we therefore obtain

$$\mathbb{E}[f(\mathbf{x}_{t+1}) - f^{\star}] \le \left(1 - \frac{\mu}{dL}\right) [f(\mathbf{x}_t) - f^{\star}].$$

The Polyak-Lojasiewicz Condition

Definition: f satisfies the Polyak-Lojasiewicz Inequality (PL) if the following holds for some $\mu > 0$,

$$\frac{1}{2}\|\nabla f(\mathbf{x})\|^2 \ge \mu(f(\mathbf{x}) - f^*), \quad \forall \ \mathbf{x}.$$

Lemma (Strong Convexity \Rightarrow PL)

Let f be strongly convex with parameter $\mu > 0$. Then f satisfies PL for the same μ .

Proof.

For all x and y we have

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\mu}{2} \|\mathbf{y} - \mathbf{x}\|^2.$$

minimizing each side of the inequality with respect to y we obtain

$$f(\mathbf{x}^*) \ge f(\mathbf{x}) - \frac{1}{2\mu} \|\nabla f(\mathbf{x})\|^2.$$

Linear Convergence without Strong Convexity

Examples satisfying PL:

▶ $f(\mathbf{x}) := g(A\mathbf{x})$ for strongly convex g and arbitrary matrix A, including least squares regression and many other applications in machine learning.

Linear convergence for all f satisfying the PL condition:

Corollary

For minimization of a function f which is coordinate-wise smooth with constant L, satisfies the PL inequality, and has a non-empty solution set \mathcal{X}^{\star} , random coordinate descent with a step-size of 1/L has the expected linear convergence rate of

$$\mathbb{E}[f(\mathbf{x}_t) - f^*] \le \left(1 - \frac{\mu}{dL}\right)^t [f(\mathbf{x}_0) - f^*].$$

Importance Sampling

Uniformly random selection is not always best!

ightharpoonup individual smoothness constants L_i for each coordinate i

$$f(\mathbf{x} + \gamma \mathbf{e}_i) \le f(\mathbf{x}) + \gamma \nabla_i f(\mathbf{x}) + \frac{L_i}{2} \gamma^2$$

Coordinate descent using this modified selection probabilities $P[i_t=i]=\frac{L_i}{\sum_i L_i}$, and using a step-size of $1/L_{i_t}$ converges (Exercise 59) with the faster rate of

$$\mathbb{E}[f(\mathbf{x}_t) - f^*] \le \left(1 - \frac{\mu}{d\bar{L}}\right)^t [f(\mathbf{x}_0) - f^*],$$

where $\bar{L} = \frac{1}{d} \sum_{i=1}^{d} L_i$.

Often: $\bar{L} \ll L = \max_i L_i$!

Steepest Coordinate Descent

► Coordinate selection rule

$$i_t := \underset{i \in [d]}{\operatorname{argmax}} |\nabla_i f(\mathbf{x}_t)|.$$

"Greedy" or steepest coordinate descent.

Deterministic vs random.

Convergence of Steepest Coordinate Descent

Has same convergence rate as for random coordinate descent!

Use

$$\max_{i} |\nabla_{i} f(\mathbf{x})|^{2} \ge \frac{1}{d} \sum_{i} |\nabla_{i} f(\mathbf{x})|^{2},$$

(And: algorithm is deterministic, so no need to take expectations in the proof.)

Corollary

Steepest coordinate descent with a step-size of 1/L has the linear convergence rate of

$$f(\mathbf{x}_t) - f^* \le \left(1 - \frac{\mu}{dL}\right)^t [f(\mathbf{x}_0) - f^*].$$

Faster Convergence of Steepest Coordinate Descent

Faster convergence can be obtained for this algorithm when the strong convexity of f is measured with respect to the ℓ_1 -norm instead of the standard Euclidean norm, i.e.

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\mu_1}{2} \|\mathbf{y} - \mathbf{x}\|_1^2.$$

Theorem

If f is coordinate-wise L-smooth, and strongly convex w.r.t. the ℓ_1 -norm with parameter $\mu_1>0$, steepest coordinate descent with a step-size of 1/L has the linear convergence rate of

$$f(\mathbf{x}_t) - f^* \le \left(1 - \frac{\mu_1}{L}\right)^t [f(\mathbf{x}_0) - f^*].$$

Faster Convergence of Steepest Coordinate Descent

Proof: Same as above theorem, but using the following lemma measuring the PL inequality in the ℓ_{∞} -norm:

Lemma

Let f be strongly convex w.r.t. the ℓ_1 -norm with parameter $\mu_1 > 0$. Then f satisfies

$$\frac{1}{2} \|\nabla f(\mathbf{x})\|_{\infty}^2 \ge \mu_1(f(\mathbf{x}) - f^*).$$

(Proof: omitted)

Non-smooth objectives

Have proved everything for smooth f. What about non-smooth?

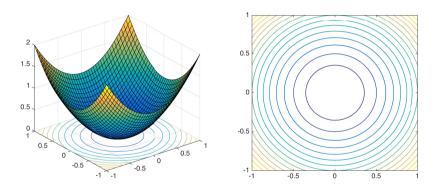


Figure: A smooth function: $f(\mathbf{x}) := ||\mathbf{x}||^2$.

figure by Alp Yurtsever & Volkan Cevher, EPFL

Non-smooth objectives

For general non-smooth f, coordinate descent fails: gets permanently stuck:

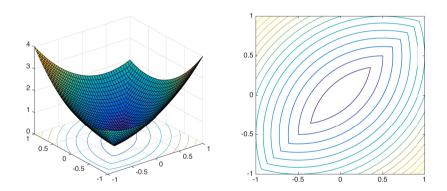


Figure: A non-smooth function: $f(\mathbf{x}) := ||\mathbf{x}||^2 + |x_1 - x_2|$.

figure by Alp Yurtsever & Volkan Cevher, EPFL

Non-smooth separable objectives

What if the non-smooth part is separable over the coordinates?

$$f(\mathbf{x}) := g(\mathbf{x}) + h(\mathbf{x})$$
 with $h(\mathbf{x}) = \sum_{i} h_i(x_i)$,

global convergence!

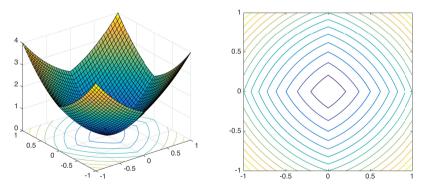


Figure: A non-smooth but separable function: $f(\mathbf{x}) := \|\mathbf{x}\|^2 + \|\mathbf{x}\|_1$.

Applications

- ► Random coordinate descent
 - is state-of-the-art for generalized linear models $f(\mathbf{x}) := g(A\mathbf{x}) + \sum_i h_i(x_i)$.

Regression, classification (with different regularizers)

- ► Steepest coordinate descent
 - Training with the help of GPUs (or other hardware of limited memory):

Use steepest coordinates to decide which subset of the data A to put onto the GPU.

ightarrow DuHL algorithm used by IBM & NVIDIA. *link1*, *link2*