Optimization for Machine Learning
CS-439

Lecture 10: Accelerated Gradient Descent, Gradient-free, and Applications

Nicolas Flammarion

EPFL — github.com/epfml/0OptML_course

May 13, 2022

github.com/epfml/OptML_course

Chapter X.1

Accelerated Gradient Descent

EPFL Optimization for Machine Learning CS-439

2/21

Smooth convex functions: less than O(1/¢) steps?

Fixing L and R = ||x¢ — x*||, the error of gradient descent after T" steps is O(1/T).
Lee and Wright [LW19]:

» A better upper bound of o(1/T") holds.
» A lower bound of Q(1/7"'%?) also holds, for any fixed § > 0.

So, gradient descent is slightly faster on smooth functions than what we proved, but
not significantly.

EPFL Optimization for Machine Learning CS-439 3/21

First-order methods: less than O(1/¢) steps?
Maybe gradient descent is not the best possible algorithm?
After all, it is just some algorithm that uses gradient information.

First-order method:

» An algorithm that gains access to f only via an oracle that is able to return values
of f and V£ at arbitrary points.

» Gradient descent is a specific first-order method.

What is the best first-order method for smooth convex functions, the one with the
smallest upper bound on the number of oracle calls in the worst case?

Nemirovski and Yudin 1979 [NY83]: every first-order method needs in the worst case
Q(1/4/¢) steps (gradient evaluations) in order to achieve an additive error of € on
smooth functions.

There is a gap between O(1/¢) (gradient descent) and the lower bound!

EPFL Optimization for Machine Learning CS-439

Acceleration for smooth convex functions: O(1/,/c) steps

Nesterov 1983 [Nes83, Nes18]: There is a first-order method that needs only
O(1/+/2) steps on smooth convex functions, and by the lower bound of Nemirovski
and Yudin, this is a best possible algorithm!

The algorithm is known as (Nesterov's) accelerated gradient descent.

A number of (similar) optimal algorithms with other proofs of the O(1/+/) upper
bound are known, but there is no well-established “simplest proof”.

Here: a recent proof based on potential functions [BG17]. Proof is simple but not very
instructive (it works, but it's not clear why).

EPFL Optimization for Machine Learning CS-439 5/21

Nesterov’s accelerated gradient descent

Let f: R?% — R be convex, differentiable, and smooth with parameter L. Choose
Zo = yo = Xg arbitrary. For ¢t > 0, set

1
Yirl = X — va(xt)
t+1
Zi41 = 2y — va(xt)
t+1 n 2
X = — —Z11.
t+1 75+3}’t+1 13 t+1

> Perform a “smooth step” from x; to y¢41.
> Perform a more aggressive step from z; to z; 1.

> Next iterate x4 is a weighted average of y;y1 and z;;1, where we compensate
for the more aggressive step by giving z;41 a relatively low weight.

Why should this work??

EPFL Optimization for Machine Learning CS-439

Nesterov’s accelerated gradient descent: Error bound

Theorem

Let f: RY — R be convex and differentiable with a global minimum x*; furthermore,
suppose that f is smooth with parameter L. Accelerated gradient descent yields

oL ||zg — x*||

Flyr) = £6e) < S

, T >0.

To reach error at most ¢, accelerated gradient descent therefore only needs O(1//¢)
steps instead of O(1/¢).

Recall the bound for gradient descent:

Ixo - x*|2, T >o0.

L
Flocr) = F(x") < o

EPFL Optimization for Machine Learning CS-439

Nesterov’s accelerated gradient descent: The potential function

Idea: assign a potential ®(¢) to each time ¢ and show that ®(¢t + 1) < ®(%).

Out of the blue: let's define the potential as

O(t) = t(t + 1) (f(ye) = F(x*) + 2L ||z — x*|.

If we can show that the potential always decreases, we get

T(T +1) (f(yr) = f(x*)) +2L |z — x*|* < 2L 2o — x*|]°.

®(T) ®(0)

Rewriting this, we get the claimed error bound.

EPFL Optimization for Machine Learning CS-439 8/21

Potential function decrease: Three Ingredients

Sufficient decrease for the smooth step from x; to y;11:

Fyern) < F00) = 52 IV A G 1)

Vanilla analysis for the more aggressive step from z; to z;+1: (7 = % g = Vf(x)):

. t+1

& (20— x") = el + 5 (=% = o = x13)s ()

t+1

Convexity (graph of f is above the tangent hyperplane at x;):

fox) = f(w) < g (x —w), weR™ (3)

EPFL Optimization for Machine Learning CS-439

Potential function decrease: Proof
By definition of potential,

BE+1) = 1) (Fyirn) — S 420+ 1) (Fyen) — F6) + 2L zpn — x|,
o) =) (v) - Fx)) 1oLl - x|

Now, prove that A := (®(t+ 1) — ®(¢))/(t+ 1) <0«

A =t ve) — FO) + 2T a) — SO0 + 5o (s = <P e — x°IP)
D (i) — Fr) + 2 (i) —) + ot el — 267 (7~ x)

< t(f(xe) = Sy))+2(f(xt)_f(X*))_ﬁHgt”2_Qgt (2 — x¥)

< () — Fly) +2(F(x1) — F)) — 287 (20— x°)
D 1T (e — yo) + 26 (ke — x) — 27 (20 —)
= g ((t+2)xt—tyt—2zt) (2 léo) g:O:O. O

EPFL Optimization for Machine Learning CS-439 10/21

Chapter X.2

Zero-Order Optimization

EPFL Optimization for Machine Learning CS-439 11/21

Look mom no gradients!

Can we optimize min,ga f(x) if without access to gradients?

meet the newest fanciest optimization algorithm,...
Random search

pick a random direction d; € R?

v := argmin f(x; + ydy) (line-search)
vER

Xi41 = X¢ + ydy

EPFL Optimization for Machine Learning CS-439

Convergence rate for derivative-free random search
Converges same as gradient descent - up to a slow-down factor d.

Proof. Assume that f is a L-smooth convex, differentiable function. For any ~, by
smoothness, we have:

2
Flose) < Fx) + lde, V7)) + L P

Minimizing the upper bound, there is a step size 7 for which

o+ 3) < o) = 7 (7507 V)

The step size we actually took (based on f directly) can only be better:
fxe+yde) < flxe+7dy) -
Taking expectations, and using the Lemma E,(r'g)? = 1 Lilg||? for r ~ sphere C R? :

E[f(xi + 7)< Blf ()] — 2BV ()]

EPFL Optimization for Machine Learning CS-439

Convergence rate for derivative-free random search

Same as what we obtained for gradient descent,
now with an extra factor of d. d can be huge!!!

Can do the same for different function classes, as before

» For convex functions, we get a rate of O(dL/e) .

» For strongly convex, we get O(dL/plog(1/e)) .

Always d times the complexity of gradient descent on the function class.

credits to Moritz Hardt

EPFL Optimization for Machine Learning CS-439 14/21

Applications for derivative-free random search

Applications

» competitive method for Reinforcement learning
» memory and communication advantages: never need to store a gradient

» hyperparameter optimization, and other difficult e.g. discrete optimization
problems

EPFL Optimization for Machine Learning CS-439 15/21

Reinforcement learning

st+1 = f(st,at, et) .
where s; is the state of the system, a; is the control action, and e; is some random
noise. We assume that f is fixed, but unknown.

We search for a control ‘policy’
a;:=m(ag,...,a,-1,80,...,5¢) -

which takes a trajectory of the dynamical system and outputs a new control action.
Want to maximize overall reward

N
max Fe, [Z Ry(sy, at)]
t=0
s.t. St11 = f(sta at, et)
(so given)

Examples: Simulations, Games (e.g. Atari), Alpha Go
EPFL Optimization for Machine Learning CS-439

Chapter X.3
Adaptive & other SGD Methods

EPFL Optimization for Machine Learning CS-439 17/21

Adagrad
Adagrad is an adaptive variant of SGD

pick a stochastic gradient g
¢

update [Gy]; := > ([gs]i)? Vi
s=0

[X¢+1]i == [xe)i — '[gt]i Vi

(standard choice of g; := V f;(x;) for sum-structured objective functions f = Zj fi)

» chooses an adaptive, coordinate-wise learning rate
» strong performance in practice
» Variants: Adadelta, Adam, RMSprop

EPFL Optimization for Machine Learning CS-439

Adam

Adam is a momentum variant of Adagrad

pick a stochastic gradient g;

my = fimy_; + (1 — f1)g: (momentum term)
[vili := Ba[vi_1]i + (1 — B2)([gs)i)* Vi (2nd-order statistics)
pers) = [xei — —m=lmgi Vi

[Vt]i

v

faster forgetting of older weights

» momentum from previous gradients (see acceleration)

v

(simplified version, without correction for initialization of mg,vy)

v

strong performance in practice, e.g. for self-attention networks

EPFL Optimization for Machine Learning CS-439

SignSGD

Only use the sign (one bit) of each gradient entry:
SignSGD is a communication efficient variant of SGD.

pick a stochastic gradient g;
[Xt41]i := [xeli — v sign([gt)s) Vi

(with possible rescaling of ~; with [|g||;)

» communication efficient for distributed training

> convergence issues

EPFL Optimization for Machine Learning CS-439

Bibliography

[

[

Nikhil Bansal and Anupam Gupta.
Potential-function proofs for first-order methods.
CoRR, abs/1712.04581, 2017.

Ching-Pei Lee and Stephen Wright.
First-order algorithms converge faster than o(1/k) on convex problems.

In ICML - Proceedings of the 36th International Conference on Machine Learning,

volume 97 of PMLR, pages 3754-3762, Long Beach, California, USA, 2019.

Yurii Nesterov.

A method of solving a convex programming problem with convergence rate
o(1/k?).

Soviet Math. Dokl., 27(2), 1983.

Yurii Nesterov.
Lectures on Convex Optimization, volume 137 of Springer Optimization and Its
Applications.

r,.second edition, 2018.

EPFL Optim'\%?{fﬂl rf]og%aéhme Learning

21/21

