Optimization for Machine Learning in Practice I

Optimization for ML Course - EPFL - 20th May 2022

Martin Jaggi EPE

Machine Learning and Optimization Laboratory mlo.epfl.ch

Machine Learning

Where are we?

Systems

Optimization

Applications

Practical comparison of algorithms

https://imgur.com/a/Hqolp#2dKCQHh

- Custom AI hardware & systems
- Federated or decentralized training
- Privacy
- Interpretability
- trust, fairness and robustness in ML (e.g. robust & secure against adversaries)

Optimization is a key element of most above topics

ML Training

Training algorithms: SGD-based

 $i_t \sim \text{Uniform}(1, |\text{data}|)$

 $\boldsymbol{x}_{t+1} := \boldsymbol{x}_t - \gamma_t \nabla f_{i_t}(\boldsymbol{x}_t)$

 $\min_{\mathbf{x}} f(\mathbf{x}) = \frac{1}{|data|} \sum_{i=1}^{n} f_i(\mathbf{x})$ $i \in data$

Model Sizes (Transformer Models)

https://www.arxiv-vanity.com/papers/2104.04473/

Systems

What are the fundamental limits of **parallelizing** the training of neural networks?

Parallel & Distributed Training

Distribute compute & memory across many devices

One-Shot Averaging Does Not Work

Communication: Always / Never

Naive Distributed SGD

#local datapoints read:T
communications: T
convergence: ✓

"always communicate"

One-Shot Averaged Distributed Optimization

#local datapoints read:T
communications: 1
convergence: X

"never communicate"

Just increase the batch size!

Measuring the Effects of Data Parallelism on Neural Network Training Shallue et al., 2018

Challenge The Cost of Communication

• Reading v from memory (RAM) 100 ns

• Sending v to another machine 500'000 ns

 Typical Map-Reduce iteration 10'000'000'000 ns

$oldsymbol{v} \in \mathbb{R}^{100}$

Challenge The Cost of Communication

High-Performance Distributed Machine Learning using Apache Spark Dünner et al. 2016, <u>arxiv.org/abs/1612.01437</u>

Data Parallel DL, Local Update Steps

Local SGD

Mini-batch SGD

Synchronous

Mini-Batch!

Asynchronous Parallel SGD

Asynchronous

Communication Compression

Examples: quantization (e.g. 1 • top k=1% of all the rank-1 approximati

A compressed version of model updates?

Communication	
	Reduction
-bit SGD)	32x
entries	100x
ion	>100x

Gradient Compression

A compressed version of model updates?

Layer gradient

SGD fails with naive/biased compressors.

 $\min_{x \in \mathbb{R}^2} |x_1 + x_2| + 2|x_1 - x_2|$

Error Feedback

Error Feedback

Error Feedback

Error Feedback: Convergence Rate

δ : compression ratio

SGD on smooth non-convex objectives (w/central coordinator)

Error Feedback Fixes SignSGD and other Gradient Compression Schemes

 $\|\mathcal{C}(\mathbf{x}) - \mathbf{x}\|_{2}^{2} \le (1 - \delta) \|\mathbf{x}\|_{2}^{2}$

Can we also save Compute and Memory?

e.g. for deployment on low-resource devices

Model Compression with Error Feedback

Prune most weights (set to zero)

set to limited precision

interactive while training

Dynamic Model Pruning with Feedback

Model-Parallel DL

(Model Parallel)

http://kuozhangub.blogspot.com/2017/08/data-parallel-and-model-parallel.html

Gradients from collaborators: - Federated Learning

Collaborative & Federated Training

100000

Data

server or P2P

Big Picture

data

personal data

Goode

Federated Learning 2a

Local SGD steps = "Federated averaging"

 Google Android Keyboard

Federated Learning $\min_{\mathbf{x}} \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x})$

Fed Avg / Local SGD *

for some local steps

$$y_i := y_i - \eta \nabla f_i(y_i)$$

$$x := \frac{1}{n} \sum_{i=1}^n y_i \quad (aggregation)$$

Client drift

Y л

server

20

 \boldsymbol{X}_1

 x^{\star}

Updates

20

20

y

x

 y_2

Client drift

for some local steps

$\boldsymbol{m} := (1 - \beta) \nabla f_i(\boldsymbol{x}) + \beta \boldsymbol{m}$

Mime algorithm framework

$\mathbf{y}_i := \mathbf{y}_i - \eta \left((1 - \beta) \nabla f_i(\mathbf{y}_i) + \beta \mathbf{m} \right)$

aggregated on server after each round

Thanks! mlo.epfl.ch tml.epfl.ch

2