forked from Hippogriff/CSGNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGraphs.py
302 lines (259 loc) · 8.65 KB
/
Graphs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import numpy as np
class PriorityQueue:
def __init__(self):
self.heapArray = [(0, 0)]
self.currentSize = 0
def buildHeap(self, alist):
self.currentSize = len(alist)
self.heapArray = [(0, 0)]
for i in alist:
self.heapArray.append(i)
i = len(alist) // 2
while (i > 0):
self.percDown(i)
i = i - 1
def percDown(self, i):
while (i * 2) <= self.currentSize:
mc = self.minChild(i)
if self.heapArray[i][0] > self.heapArray[mc][0]:
tmp = self.heapArray[i]
self.heapArray[i] = self.heapArray[mc]
self.heapArray[mc] = tmp
i = mc
def minChild(self, i):
if i * 2 > self.currentSize:
return -1
else:
if i * 2 + 1 > self.currentSize:
return i * 2
else:
if self.heapArray[i * 2][0] < self.heapArray[i * 2 + 1][0]:
return i * 2
else:
return i * 2 + 1
def percUp(self, i):
while i // 2 > 0:
if self.heapArray[i][0] < self.heapArray[i // 2][0]:
tmp = self.heapArray[i // 2]
self.heapArray[i // 2] = self.heapArray[i]
self.heapArray[i] = tmp
i = i // 2
def add(self, k):
self.heapArray.append(k)
self.currentSize = self.currentSize + 1
self.percUp(self.currentSize)
def delMin(self):
retval = self.heapArray[1][1]
self.heapArray[1] = self.heapArray[self.currentSize]
self.currentSize = self.currentSize - 1
self.heapArray.pop()
self.percDown(1)
return retval
def isEmpty(self):
if self.currentSize == 0:
return True
else:
return False
def decreaseKey(self, val, amt):
# this is a little wierd, but we need to find the heap thing to decrease by
# looking at its value
done = False
i = 1
myKey = 0
while not done and i <= self.currentSize:
if self.heapArray[i][1] == val:
done = True
myKey = i
else:
i = i + 1
if myKey > 0:
self.heapArray[myKey] = (amt, self.heapArray[myKey][1])
self.percUp(myKey)
def __contains__(self, vtx):
for pair in self.heapArray:
if pair[1] == vtx:
return True
return False
# class Vertex:
# def __init__(self, key):
# self.id = key
# self.connectedTo = {}
# self.distance = 1e4
# self.pred = None
# self.program = []
# self.program_selected = False
#
# def addNeighbor(self, nbr, weight=0):
# self.connectedTo[nbr] = weight
#
# def __str__(self):
# return str(self.id) + ' connectedTo: ' + str([x.id for x in self.connectedTo])
#
# def getConnections(self):
# return self.connectedTo.keys()
#
# def getId(self):
# return self.id
#
# def getWeight(self, nbr):
# return self.connectedTo[nbr]
#
# def getDistance(self):
# return self.distance
#
# def setDistance(self, distance):
# self.distance = distance
#
# def setPred(self, pred):
# self.pred = pred
class Node:
def __init__(self, key):
self.id = key
self.connectedTo = {}
self.distance = 1e2
self.pred = None
# Whether a program is selected or not
self.program_id = None
self.root = False
self.selected = False
self.best_weight = None
def addNeighbor(self, nbr, weight=0):
self.connectedTo[nbr] = weight
def __str__(self):
return str(self.id) + ' connectedTo: ' + str([x.id for x in self.connectedTo])
def getConnections(self):
return self.connectedTo.keys()
def getId(self):
return self.id
def getWeight(self, nbr):
return self.connectedTo[nbr]
def getDistance(self):
return self.distance
def setDistance(self, distance):
self.distance = distance
def setPred(self, pred):
self.pred = pred
class Graph:
"""
Creates a directed graph
"""
def __init__(self):
self.vertList = {}
self.numVertices = 0
def addVertex(self, key):
self.numVertices = self.numVertices + 1
newVertex = Node(key)
self.vertList[key] = newVertex
return newVertex
def getVertex(self, n):
if n in self.vertList:
return self.vertList[n]
else:
return None
def __contains__(self, n):
return n in self.vertList
def addEdge(self, f, t, weights):
if f not in self.vertList:
nv = self.addVertex(f)
if t not in self.vertList:
nv = self.addVertex(t)
self.vertList[f].addNeighbor(self.vertList[t], weights)
self.vertList[t].addNeighbor(self.vertList[f], weights)
def getVertices(self):
return self.vertList.keys()
def vertex_keys(self):
self.vertex2keys = {}
for k, v in self.vertList.items():
self.vertex2keys[v] = k
def getIndex(self, vertex):
for k, v in self.vertList.items():
if v == vertex:
return k
return None
def getEdgesWeight(self, vertex1, vertex2):
"""
Get the minimum weight from vertex1 to vertex2
:param vertex1: is the vertex that is already selected to be part of the MST
:param program_id1: Program id that is selected for the vertex1
:param vertex2: the vertex not selected yet
:return:
"""
key1 = self.vertex2keys[vertex1]
key2 = self.vertex2keys[vertex2]
program_id1 = vertex1.program_id
if vertex1.root:
# vertex is a root
weight = np.min(vertex1.connectedTo[vertex2])
program_id = np.argmin(vertex1.connectedTo[vertex2])
return weight, program_id
else:
weight = np.min(vertex1.connectedTo[vertex2][program_id1, :])
program_id = np.argmin(vertex1.connectedTo[vertex2][program_id1, :])
return weight, program_id
def __iter__(self):
return iter(self.vertList.values())
def dijkstra(aGraph,start):
pq = PriorityQueue()
start.setDistance(0)
pq.buildHeap([(v.getDistance(),v) for v in aGraph])
while not pq.isEmpty():
currentVert = pq.delMin()
for nextVert in currentVert.getConnections():
newDist = currentVert.getDistance() + currentVert.getWeight(nextVert)
if newDist < nextVert.getDistance():
nextVert.setDistance( newDist )
nextVert.setPred(currentVert)
pq.decreaseKey(nextVert, newDist)
def steinertree(G,start):
Nodes = []
pq = PriorityQueue()
for v in G:
v.setDistance(1e2)
v.setPred(None)
start.setDistance(0)
pq.buildHeap([(v.getDistance(),v) for v in G])
while not pq.isEmpty():
currentVert = pq.delMin()
currentVert.selected = True
Nodes.append(G.vertex2keys[currentVert])
for nextVert in currentVert.getConnections():
if nextVert.selected:
continue
newCost, program_id = G.getEdgesWeight(currentVert, nextVert)
if nextVert in pq and newCost < nextVert.getDistance():
nextVert.setPred(currentVert)
nextVert.setDistance(newCost)
nextVert.program_id = program_id
nextVert.best_weight = newCost
pq.decreaseKey(nextVert, newCost)
return Nodes
def prim(G,start):
pq = PriorityQueue()
for v in G:
v.setDistance(1e2)
v.setPred(None)
start.setDistance(0)
pq.buildHeap([(v.getDistance(),v) for v in G])
while not pq.isEmpty():
currentVert = pq.delMin()
for nextVert in currentVert.getConnections():
newCost = currentVert.getWeight(nextVert)
if nextVert in pq and newCost < nextVert.getDistance():
nextVert.setPred(currentVert)
nextVert.setDistance(newCost)
pq.decreaseKey(nextVert,newCost)
# prim(graph, graph.vertList[0])
# graph.vertex_keys()
#
# new_graph = Graph()
# for k, v in graph.vertList.items():
# mini_dist = 1e5
# mini_neigh = None
# for neighbour in v.getConnections():
# if neighbour.getDistance() < mini_dist:
# mini_dist = neighbour.getDistance()
# mini_neigh = neighbour
# neigh_key = graph.getIndex(mini_neigh)
# print (k, neigh_key)
# if not neigh_key == None:
# new_graph.addEdge(k, neigh_key, v.connectedTo[mini_neigh])