-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSLDU.sv
executable file
·464 lines (374 loc) · 19 KB
/
SLDU.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
module SLDU import vect_pkg::*; #(
parameter DATA_WIDTH = 32,
parameter LANES = 4,
parameter VLEN = 512,
parameter ELEMS = VLEN/(DATA_WIDTH*LANES),
localparam ELEM_N = VLEN/DATA_WIDTH, //16
localparam ELEM_B = $clog2(ELEMS),
localparam FU_WIDTH = DATA_WIDTH * LANES,
localparam VECTOR_BURST_SIZE = FU_WIDTH/DATA_WIDTH
)(
input clk_i,
input resetn_i,
input req_i,
input [DATA_WIDTH-1:0] instr_i,
output ready_o,
//Element calculator
input [DATA_WIDTH-1:0] rs1_rdata_i, //Also used for scalar argument
output reg [DATA_WIDTH-1:0] rd_wdata_o, //Scalar output
output reg rd_wr_en_o,
//Lane interface
input [DATA_WIDTH-1:0] lane_vs1_rdata_i [0:LANES-1],
input [DATA_WIDTH-1:0] lane_vs2_rdata_i [0:LANES-1],
input [DATA_WIDTH-1:0] lane_mask_rdata_i,
output [DATA_WIDTH-1:0] lane_vd_wdata_o [0:LANES-1],
output lane_vd_wr_en_o [0:LANES-1],
output [ELEM_B-1:0] lane_vs1_elem_sel_o [0:LANES-1],
output [ELEM_B-1:0] lane_vs2_elem_sel_o [0:LANES-1], //This is to chose element from lanes
output [ELEM_B-1:0] lane_vd_elem_sel_o [0:LANES-1]
);
logic [ELEM_B-1:0] lane_vs1_elem_sel_vcom [0:LANES-1];
logic [ELEM_B-1:0] lane_vs2_elem_sel_vcom [0:LANES-1];
logic [ELEM_B-1:0] lane_vd_elem_sel_vcom [0:LANES-1];
logic [DATA_WIDTH-1:0] lane_vs1_rdata_vcom [0:LANES-1];
logic [DATA_WIDTH-1:0] lane_vs2_rdata_vcom [0:LANES-1];
logic [DATA_WIDTH-1:0] lane_vd_wdata_vcom [0:LANES-1];
logic lane_vd_scalar_move;
logic lane_vd_wr_en_vcom [0:LANES-1];
logic [ELEM_B-1:0] bus_mux [0:LANES-1];
logic [DATA_WIDTH-1:0] bus_vcom [0:LANES-1];
logic [DATA_WIDTH-1:0] rd_el0_reg;
arithm_instr_t instr_q;
logic instr_pending;
logic is_op_red;
logic [DATA_WIDTH-1:0] red_result_d;
logic [DATA_WIDTH-1:0] red_result_q;
logic instr_is_masked;
logic [ELEMS-1:0] elem_masked;
logic [DATA_WIDTH-1:0] mask_q;
typedef enum logic [2:0] {OP_SCALAR_MOVE, OP_SLIDE_UP, OP_SLIDE_DN, OP_GATHER, OP_RED /*OP_COMPRESS*/, OP_VMV, OP_INVALID} operation_t;
typedef enum logic [1:0] {SLIDE_IDLE = 2'h0, SLIDE_READ = 2'h1, SLIDE_WRITE = 2'h2, SLIDE_NOP = 2'h3} slide_fsm_t;
operation_t operation;
slide_fsm_t slide_this_state, slide_next_state;
logic [ELEM_B-1:0] slide_elem_this_cnt, slide_elem_next_cnt;
assign lane_vs1_rdata_vcom = lane_vs1_rdata_i;
assign lane_vs2_rdata_vcom = lane_vs2_rdata_i;
assign lane_vd_wr_en_o = lane_vd_wr_en_vcom;
assign lane_vs1_elem_sel_o = lane_vs1_elem_sel_vcom;
assign lane_vs2_elem_sel_o = lane_vs2_elem_sel_vcom;
assign lane_vd_elem_sel_o = lane_vd_elem_sel_vcom;
assign instr_is_masked = !(instr_q.vm);
//Element calculator
enum logic [1:0] {SLDU_OFF_UNIT, SLDU_OFF_SCALAR, SLDU_OFF_VECTOR, SLDU_OFF_IMM} offset_type;
logic [VECTOR_BURST_SIZE-1:0] elem_adder [0:LANES-1];
logic [VECTOR_BURST_SIZE-1:0] elem_ff [0:LANES-1];
logic [VECTOR_BURST_SIZE-1:0] elem_base;
logic [VECTOR_BURST_SIZE-1:0] elem_offset [0:LANES-1];
logic [VECTOR_BURST_SIZE-1:0] lane_offset [0:LANES-1];
genvar iCalc;
generate
for(iCalc = 0; iCalc < LANES; iCalc = iCalc + 1) begin
always_ff @(posedge clk_i or negedge resetn_i) begin : elemFF
if(!resetn_i) elem_ff[iCalc] <= 0;
else begin
case(slide_this_state)
/*
SLIDE_IDLE : elem_ff[iCalc] <= lane_offset[iCalc];
//SLIDE_IDLE : elem_ff[iCalc] <= (slide_next_state == SLIDE_READ) ? lane_offset[iCalc]
// : lane_offset[iCalc] + elem_offset[iCalc];
//SLIDE_READ : elem_ff[iCalc] <= elem_adder[iCalc];
SLIDE_READ : elem_ff[iCalc] <= lane_offset[iCalc];
SLIDE_WRITE : elem_ff[iCalc] <= elem_adder[iCalc];
default : elem_ff[iCalc] <= lane_offset[iCalc];
*/
SLIDE_IDLE : elem_ff[iCalc] <= 0;
SLIDE_READ,
SLIDE_WRITE : elem_ff[iCalc] <= slide_elem_this_cnt;
default : elem_ff[iCalc] <= 0;
endcase
end
end
assign lane_offset[iCalc] = iCalc[1:0];
//Be careful about element calculation. For even offsets the result can be shifted right 2 places (from 16 to 4).
//But for vector offsets(gather, scatter) the offsets might be different for each element!
//The elemenets need to be reordered.
//###### SKIP VECTOR OFFSETS FOR NOW ######
//###### SLIDE UP OR DOWN - ELEM OFFSET MUST BE POSITIVE OR NEGATIVE
//###### PROBLEM: lane offset is accumulated. It should be added only once
//###### SEEMS SOLVED ######
//assign elem_adder[iCalc] = elem_offset[iCalc] + lane_offset[iCalc] + elem_ff[iCalc];
/*assign elem_adder[iCalc] = (operation == OP_SLIDE_DN) ? (lane_offset[iCalc] - elem_offset[iCalc] + (elem_ff[iCalc] * LANES))
: (lane_offset[iCalc] + elem_offset[iCalc] + (elem_ff[iCalc] * LANES));
*/
always_comb begin : adderLogic
unique case(operation)
OP_SLIDE_DN : elem_adder[iCalc] = (lane_offset[iCalc] - elem_offset[iCalc] + (elem_ff[iCalc] * LANES));
OP_SLIDE_UP : elem_adder[iCalc] = (lane_offset[iCalc] + elem_offset[iCalc] + (elem_ff[iCalc] * LANES));
default : elem_adder[iCalc] = iCalc;
endcase
end
assign lane_vs1_elem_sel_vcom[iCalc] = slide_elem_this_cnt;
assign lane_vs2_elem_sel_vcom[iCalc] = slide_elem_this_cnt;
//assign lane_vd_elem_sel_vcom[iCalc] = elem_adder[iCalc][VECTOR_BURST_SIZE-1:ELEM_B];
//###### No, it should be bits 1:0 for lane select and 3:2 for element select
//assign lane_vd_elem_sel_vcom[iCalc] = elem_ff[iCalc][VECTOR_BURST_SIZE-1:ELEM_B];
always_comb begin : offsetLogic
unique case(offset_type)
SLDU_OFF_UNIT : elem_offset[iCalc] = 4'h1;
SLDU_OFF_SCALAR : elem_offset[iCalc] = rs1_rdata_i;
SLDU_OFF_VECTOR : elem_offset[iCalc] = lane_vs1_rdata_vcom[iCalc]; //Remember, you need to permutate the elements!
SLDU_OFF_IMM : elem_offset[iCalc] = {{27{1'b0}}, instr_q.vs1_rs1_imm};
default : elem_offset[iCalc] = 4'h1;
endcase
end
end
endgenerate
//Decoder
//Decode operation type
//Decode offset type
//Decode masking
always_ff @(posedge clk_i or negedge resetn_i) begin : instrFF
if(!resetn_i) begin
instr_q <= '0;
instr_pending <= 1'b0;
mask_q <= '0;
end
else if(req_i) begin
instr_q <= instr_i;
//Set instr pending flag if there was an instruction request
instr_pending <= 1'b1;
end
else if(slide_this_state == SLIDE_READ) begin
instr_pending <= 1'b0;
mask_q <= lane_mask_rdata_i;
end
//if(slide_this_state == SLIDE_READ) mask_q <= lane_mask_rdata_i;
//Clear instr pending flag when valid instruction is decoded and being executed
end
always_comb begin : decoder
if((instr_q.funct6 inside {VSLIDEUP, VSLIDEDOWN, VADC}) || is_op_red) begin
if(instr_q.funct6 == VSLIDEUP) operation = OP_SLIDE_UP;
else if(instr_q.funct6 == VSLIDEDOWN) operation = OP_SLIDE_DN;
else if(is_op_red) operation = OP_RED;
else operation = OP_SCALAR_MOVE;
unique case(instr_q.funct3)
//OPIVV : offset_type = SLDU_OFF_VECTOR; //VECTOR CURRENTLY NOT SUPPORTED
OPIVV : offset_type = SLDU_OFF_UNIT;
OPIVI : offset_type = SLDU_OFF_IMM;
OPIVX : offset_type = SLDU_OFF_SCALAR;
OPMVV,
OPMVX : offset_type = SLDU_OFF_UNIT;
default : offset_type = SLDU_OFF_UNIT;
endcase
end
else begin
operation = OP_INVALID;
offset_type = SLDU_OFF_UNIT;
end
end
//Controller
//10010110001000001010001001010111 //vmul.vv v10,v2,v1 unmasked
//Slide vreg elem_sel will only be used to read from Vs2.
//For writes, there will be a separate element select, based on element calculation
//Which lane? depending on vector/scalar, only some of lanes may be written to
//Either all of them for vector or lane 0 for scalar
//Modify here for reduction
assign lane_vd_wr_en_vcom[0] = ((slide_this_state == SLIDE_WRITE) &&
!((operation == OP_SCALAR_MOVE) && (instr_q.funct3 == OPMVV)) &&
!(is_op_red && (slide_elem_this_cnt != 0)));
genvar iWren;
generate
for(iWren = 1; iWren < LANES; iWren = iWren + 1) begin
//###### Possibly not in read
//Disable when there is a scalar write to rd
//Also, enable in scalar read to vd only for 1st element
assign lane_vd_wr_en_vcom[iWren] = ((slide_this_state == SLIDE_WRITE) && !(operation == OP_SCALAR_MOVE) && !(operation == OP_RED));
//assign lane_vd_wr_en_vcom[iWren] = ((slide_this_state == SLIDE_WRITE) || (slide_this_state == SLIDE_READ));
end
endgenerate
assign ready_o = ((slide_this_state == SLIDE_WRITE) && (slide_elem_this_cnt == 0));
//FSM
/*
if(operation == OP_SCALAR_MOVE) begin
//Select
//Select what?
end
*/
always_comb begin : slideStateLogic
unique case(slide_this_state)
//###### Change here - after A NEW slide instruction is DECODED PROPERLY, go to read
SLIDE_IDLE : slide_next_state = ((operation != OP_INVALID) && (instr_pending)) ? SLIDE_READ : SLIDE_IDLE;
//SLIDE_READ : slide_next_state = (slide_elem_this_cnt == 0) ? SLIDE_WRITE : SLIDE_READ;
//SLIDE_READ : slide_next_state = (slide_elem_this_cnt == (LANES-1)) ? SLIDE_IDLE : SLIDE_READ;
//Modify here for reduction - wait for reduction to be completed
SLIDE_READ : slide_next_state = SLIDE_WRITE;
//SLIDE_WRITE : slide_next_state = (slide_elem_this_cnt == (LANES-1)) ? SLIDE_IDLE : SLIDE_WRITE;
SLIDE_WRITE : slide_next_state = (slide_elem_this_cnt == 0) ? SLIDE_IDLE : SLIDE_WRITE;
default : slide_next_state = SLIDE_IDLE;
endcase
end
always_comb begin : slideCntLogic
unique case(slide_this_state)
//###### Count from 0
//SLIDE_IDLE : slide_elem_next_cnt = (operation == OP_SCALAR_MOVE) ? 0 : LANES-1;
SLIDE_IDLE : slide_elem_next_cnt = 0;
SLIDE_READ : slide_elem_next_cnt = slide_elem_this_cnt + 1; //Scalar move will have less cycles
//SLIDE_WRITE : slide_elem_next_cnt = (operation == OP_SCALAR_MOVE) ? (LANES-1) : slide_elem_this_cnt + 1;
SLIDE_WRITE : slide_elem_next_cnt = (operation == OP_SCALAR_MOVE) ? 0 : slide_elem_this_cnt + 1;
default : slide_elem_next_cnt = 0;
endcase
end
always_ff @(posedge clk_i or negedge resetn_i) begin : slideFSM
if(!resetn_i) begin
slide_this_state <= SLIDE_IDLE;
slide_elem_this_cnt <= 0;
end
else begin
slide_this_state <= slide_next_state;
slide_elem_this_cnt <= slide_elem_next_cnt;
end
end
//Element control MUX
//This multiplexer selects SOURCE LANE to a specific DESTINATION LANE.
//This means that every DESTINATION LANE can get an element from ANY SOURCE LANE.
//A specific element in that lane will be selected using ELEMENT COUNTER.
genvar iMux;
generate
for(iMux = 0; iMux < LANES; iMux = iMux + 1) begin
//But this has to be controlled independently !!!
//This means that index of vreg_array(which is irrelevant btw, should be bus),
//...should be independent based on lane number calculated in element calculator
//0,4,8,12 - Lane 0
//1,5,9,13 - Lane 1
//2,6,10,14 - Lane 2
//3,7,11,15 - Lane 3
//Take note
assign bus_mux[iMux] = elem_adder[iMux][ELEM_B-1:0];
//assign lane_vd_wdata_vcom[iMux] = bus_vcom[bus_mux[iMux]];
end
endgenerate
/*
I really wish I didn't need to do this.
But I haven't had any better idea, nothing else worked.
*/
always_comb begin : mux
case({bus_mux[0], bus_mux[1], bus_mux[2], bus_mux[3]})
{2'h0,2'h1,2'h2,2'h3} : begin
lane_vd_wdata_vcom[0] = bus_vcom[0];
lane_vd_wdata_vcom[1] = bus_vcom[1];
lane_vd_wdata_vcom[2] = bus_vcom[2];
lane_vd_wdata_vcom[3] = bus_vcom[3];
lane_vd_elem_sel_vcom[0] = elem_adder[0][VECTOR_BURST_SIZE-1:ELEM_B];
lane_vd_elem_sel_vcom[1] = elem_adder[1][VECTOR_BURST_SIZE-1:ELEM_B];
lane_vd_elem_sel_vcom[2] = elem_adder[2][VECTOR_BURST_SIZE-1:ELEM_B];
lane_vd_elem_sel_vcom[3] = elem_adder[3][VECTOR_BURST_SIZE-1:ELEM_B];
end
{2'h1,2'h2,2'h3,2'h0} : begin
/*
lane_vd_wdata_vcom[0] = bus_vcom[3];
lane_vd_wdata_vcom[1] = bus_vcom[0];
lane_vd_wdata_vcom[2] = bus_vcom[2];
lane_vd_wdata_vcom[3] = bus_vcom[1];
lane_vd_elem_sel_vcom[0] = elem_adder[3][VECTOR_BURST_SIZE-1:ELEM_B];
lane_vd_elem_sel_vcom[1] = elem_adder[0][VECTOR_BURST_SIZE-1:ELEM_B];
lane_vd_elem_sel_vcom[2] = elem_adder[2][VECTOR_BURST_SIZE-1:ELEM_B];
lane_vd_elem_sel_vcom[3] = elem_adder[1][VECTOR_BURST_SIZE-1:ELEM_B];
*/
//Seems that here it should be 3012 not 3021
lane_vd_wdata_vcom[0] = bus_vcom[3];
lane_vd_wdata_vcom[1] = bus_vcom[0];
lane_vd_wdata_vcom[2] = bus_vcom[1];
lane_vd_wdata_vcom[3] = bus_vcom[2];
lane_vd_elem_sel_vcom[0] = elem_adder[3][VECTOR_BURST_SIZE-1:ELEM_B];
lane_vd_elem_sel_vcom[1] = elem_adder[0][VECTOR_BURST_SIZE-1:ELEM_B];
lane_vd_elem_sel_vcom[2] = elem_adder[1][VECTOR_BURST_SIZE-1:ELEM_B];
lane_vd_elem_sel_vcom[3] = elem_adder[2][VECTOR_BURST_SIZE-1:ELEM_B];
end
{2'h2,2'h3,2'h0,2'h1} : begin
lane_vd_wdata_vcom[0] = bus_vcom[2];
lane_vd_wdata_vcom[1] = bus_vcom[3];
lane_vd_wdata_vcom[2] = bus_vcom[0];
lane_vd_wdata_vcom[3] = bus_vcom[1];
lane_vd_elem_sel_vcom[0] = elem_adder[2][VECTOR_BURST_SIZE-1:ELEM_B];
lane_vd_elem_sel_vcom[1] = elem_adder[3][VECTOR_BURST_SIZE-1:ELEM_B];
lane_vd_elem_sel_vcom[2] = elem_adder[0][VECTOR_BURST_SIZE-1:ELEM_B];
lane_vd_elem_sel_vcom[3] = elem_adder[1][VECTOR_BURST_SIZE-1:ELEM_B];
end
{2'h3,2'h0,2'h1,2'h2} : begin
lane_vd_wdata_vcom[0] = bus_vcom[1];
lane_vd_wdata_vcom[1] = bus_vcom[2];
lane_vd_wdata_vcom[2] = bus_vcom[3];
lane_vd_wdata_vcom[3] = bus_vcom[0];
lane_vd_elem_sel_vcom[0] = elem_adder[1][VECTOR_BURST_SIZE-1:ELEM_B];
lane_vd_elem_sel_vcom[1] = elem_adder[2][VECTOR_BURST_SIZE-1:ELEM_B];
lane_vd_elem_sel_vcom[2] = elem_adder[3][VECTOR_BURST_SIZE-1:ELEM_B];
lane_vd_elem_sel_vcom[3] = elem_adder[0][VECTOR_BURST_SIZE-1:ELEM_B];
end
default : begin
lane_vd_wdata_vcom[0] = bus_vcom[0];
lane_vd_wdata_vcom[1] = bus_vcom[1];
lane_vd_wdata_vcom[2] = bus_vcom[2];
lane_vd_wdata_vcom[3] = bus_vcom[3];
lane_vd_elem_sel_vcom[0] = elem_adder[0][VECTOR_BURST_SIZE-1:ELEM_B];
lane_vd_elem_sel_vcom[1] = elem_adder[1][VECTOR_BURST_SIZE-1:ELEM_B];
lane_vd_elem_sel_vcom[2] = elem_adder[2][VECTOR_BURST_SIZE-1:ELEM_B];
lane_vd_elem_sel_vcom[3] = elem_adder[3][VECTOR_BURST_SIZE-1:ELEM_B];
end
endcase
end
genvar iBus;
generate
for(iBus = 0; iBus < LANES; iBus = iBus + 1) begin
assign bus_vcom[iBus] = lane_vs2_rdata_vcom[iBus];
end
endgenerate
//Scalar path
always_comb begin : scalarCtrl
//Write scalar operand to scalar RF during READ - vmv.x.s
rd_wr_en_o = (((operation == OP_SCALAR_MOVE) && (instr_q.funct3 == OPMVV)) &&
(slide_elem_this_cnt == 0) && (slide_this_state == SLIDE_WRITE));
rd_wdata_o = rd_el0_reg;
//Switch between RS1(scalar operand) and data from lane 0 during WRITE - vmv.s.x
//bus_lane_0_scal_vect_mux = ((operation == OP_SCALAR_MOVE) && (instr_q.funct3 == OPMVX)) ? rs1_rdata_i : lane_vs2_rdata_vcom[0];
lane_vd_scalar_move = ((operation == OP_SCALAR_MOVE) && (instr_q.funct3 == OPMVX));
end
always_ff @(posedge clk_i or negedge resetn_i) begin : el0Reg
if(!resetn_i) rd_el0_reg <= '0;
//Modify here for reduction
else if((operation == OP_SCALAR_MOVE) && (instr_q.funct3 == OPMVV) && (slide_elem_this_cnt == 0)) rd_el0_reg <= bus_vcom[0];
end
genvar iVD;
generate
for(iVD = 1; iVD < LANES; iVD = iVD + 1) begin
assign lane_vd_wdata_o[iVD] = lane_vd_wdata_vcom[iVD];
end
endgenerate
//Modify here for reduction
assign lane_vd_wdata_o[0] = lane_vd_scalar_move ? rs1_rdata_i : is_op_red ? red_result_d : lane_vd_wdata_vcom[0];
assign is_op_red = ((instr_q.funct6 inside {VADD_VREDSUM, VREDAND, VSUB_VREDOR, VRSUB_VREDXOR,
VMINU_VREDMINU, VMIN_VREDMIN, VMAXU_VREDMAXU, VMAX_VREDMAX}) && (instr_q.funct3 == OPMVV));
genvar iMask;
generate
for(iMask = 0; iMask < LANES; iMask = iMask + 1) assign elem_masked[iMask] = (instr_is_masked && ~mask_q[{slide_elem_this_cnt, iMask[1:0]}]);
endgenerate
always_comb begin : redLogic
unique case (instr_q.funct6)
VADD_VREDSUM : red_result_d = (red_result_q + (elem_masked[0] ? '0 : bus_vcom[0]) + (elem_masked[1] ? '0 : bus_vcom[1]) + (elem_masked[2] ? '0 : bus_vcom[2]) + (elem_masked[3] ? '0 : bus_vcom[3]));
VREDAND : red_result_d = (red_result_q & bus_vcom[0] & bus_vcom[1] & bus_vcom[2] & bus_vcom[3]);
VSUB_VREDOR : red_result_d = (red_result_q | bus_vcom[0] | bus_vcom[1] | bus_vcom[2] | bus_vcom[3]);
VRSUB_VREDXOR : red_result_d = (red_result_q ^ bus_vcom[0] ^ bus_vcom[1] ^ bus_vcom[2] ^ bus_vcom[3]);
//VMINU_VREDMINU : red_result_d = (red_result_q + bus_vcom[0] + bus_vcom[1] + bus_vcom[2] + bus_vcom[3]);
//VMIN_VREDMIN : red_result_d =
//VMAXU_VREDMAXU : red_result_d =
//VMAX_VREDMAX : red_result_d =
default : red_result_d = '0;
endcase
end
always_ff @(posedge clk_i or negedge resetn_i) begin : redFSM
if(!resetn_i) red_result_q <= '0;
else if(is_op_red) begin
if(slide_this_state == SLIDE_READ) red_result_q <= '0;
else if(slide_this_state == SLIDE_WRITE) red_result_q <= red_result_d;
end
end
endmodule