-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlane_piped.sv
executable file
·572 lines (435 loc) · 19.9 KB
/
lane_piped.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
/*
###########################################
# Title: lane_piped.sv
# Author: Michal Gorywoda
# Date: 29.02.2024
###########################################
*/
module lane import vect_pkg::*; #(
parameter DATA_WIDTH = 32,
parameter REG_NUM = 32,
parameter VLEN = 512,
parameter LANES = 4,
parameter ELEMS = VLEN/(DATA_WIDTH*LANES),
parameter PIPE_ST = 4,
localparam ELEM_B = $clog2(ELEMS),
localparam ADDR_B = $clog2(REG_NUM),
localparam EX_PIPE_STAGES = PIPE_ST,
localparam EX_PIPE_B = $clog2(EX_PIPE_STAGES),
localparam SBIT_CNT_B = $clog2(DATA_WIDTH),
localparam MASK_LANE_B = ELEMS
)(
input clk_i,
input resetn_i,
//Change to parameter
input instr_valid_i,
input instr_req_i,
arithm_instr_t instr_i,
output ready_o,
output idle_o,
//Mask interface
input [MASK_LANE_B-1:0] mask_bits_i,
output [DATA_WIDTH-1:0] mask_bits_o,
//Scalar interface
input [DATA_WIDTH-1:0] rs1_rdata_i,
//Writeback set bits output
output [SBIT_CNT_B:0] sbit_cnt_o,
//Ext interface
input lsu_ready_i,
input sldu_ready_i,
output lsu_req_o,
output sldu_req_o,
output ext_instr_save_o,
input [ELEM_B-1:0] ext_vs_elem_cnt_i,
input [ELEM_B-1:0] ext_vd_elem_cnt_i,
input ext_vd_wr_en_i,
input [DATA_WIDTH-1:0] ext_vd_wdata_i,
output [DATA_WIDTH-1:0] ext_vs1_rdata_o,
output [DATA_WIDTH-1:0] ext_vs2_rdata_o,
output [DATA_WIDTH-1:0] ext_vs3_rdata_o
);
arithm_instr_t instr_running;
logic ext_reg_wr_en;
logic [DATA_WIDTH-1:0] ext_vs1_rdata_reg_q;
logic [DATA_WIDTH-1:0] ext_vs2_rdata_reg_q;
logic [DATA_WIDTH-1:0] ext_vs3_rdata_reg_q;
logic ext_ready;
logic [1:0] lane_vd_elem_cnt;
logic [1:0] lane_vs_elem_cnt;
///////////////////////
// RD stage logic
///////////////////////
logic rd_pipe_en;
logic rd_pipe_ready;
logic rd_busy;
arithm_instr_t rd_instr_d;
arithm_instr_t rd_instr_q;
logic rd_stall;
logic rd_stall_ready;
logic rd_vs1_addr;
logic rd_vs2_addr;
logic rd_vs3_addr;
logic rd_is_c_used;
logic rd_is_op_mul;
logic rd_is_op_div;
logic rd_is_op_piped;
logic rd_alu_op_type;
logic rd_is_op_sldu;
logic rd_is_op_lsu;
logic rd_is_op_red;
logic rd_is_ext;
logic [DATA_WIDTH-1:0] vrf_vs1_rdata;
logic [DATA_WIDTH-1:0] vrf_vs2_rdata;
logic [DATA_WIDTH-1:0] vrf_vs3_rdata;
logic [DATA_WIDTH-1:0] vrf_mask_rdata;
logic [ADDR_B-1:0] vrf_vs1_addr;
logic [ADDR_B-1:0] vrf_vs2_addr;
logic [ADDR_B-1:0] vrf_vs3_addr;
logic vrf_rd_req;
logic [ELEM_B-1:0] vrf_vs_elem_cnt;
logic vrf_rd_op_ready;
logic [DATA_WIDTH-1:0] rs1_rdata_reg_q;
logic rd_is_mask_used;
///////////////////////
// EX stage logic
///////////////////////
logic ex_pipe_en;
logic ex_pipe_ready;
arithm_instr_t ex_instr_d;
arithm_instr_t ex_instr_q;
logic ex_alu_ready;
logic ex_busy;
logic [DATA_WIDTH-1:0] alu_a;
logic [DATA_WIDTH-1:0] alu_b;
logic [DATA_WIDTH-1:0] alu_c;
logic [DATA_WIDTH-1:0] alu_result;
logic alu_mask_en;
logic alu_valid;
logic ex_alu_op_type;
logic ex_is_op_mul;
logic ex_is_op_div;
logic ex_is_op_alu;
logic ex_is_op_sldu;
logic ex_is_op_lsu;
logic ex_is_op_red;
logic ex_is_op_piped;
logic ex_is_ext;
typedef enum logic [1:0] {EXT_IDLE = 2'h0, EXT_REQ = 2'h1, EXT_WAIT = 2'h2} ext_fsm_t;
ext_fsm_t ext_this_state, ext_next_state;
logic [EX_PIPE_B-1:0] ex_pipe_cnt;
logic [ELEM_B-1:0] ex_mask_bits;
logic [DATA_WIDTH-1:0] sldu_result;
///////////////////////
// WB stage logic
///////////////////////
logic wb_pipe_en;
logic wb_pipe_ready;
arithm_instr_t wb_instr_d;
arithm_instr_t wb_instr_q;
logic wb_busy;
logic [ELEM_B-1:0] wb_mask_bits;
logic wb_mask_en;
logic wb_is_op_piped;
logic [ADDR_B-1:0] vrf_vd_addr;
logic vrf_wr_req;
logic vrf_wr_ready;
logic [ELEM_B-1:0] vrf_vd_elem_cnt;
logic [DATA_WIDTH-1:0] vrf_vd_wdata;
logic vrf_vd_wr_en;
assign ready_o = (rd_pipe_ready && ~rd_stall && ~ex_is_ext) /*|| (rd_stall && vrf_wr_ready && ~ex_is_ext)*/ || (/*~rd_stall &&*/ ex_is_ext && ext_ready);
//This condition is confusing the design. Add another stall signal for ex
assign idle_o = wb_pipe_ready; //But something else should be here. Like ALU ready, rd_pipe ready
assign ext_ready = (ex_is_op_lsu && lsu_ready_i) || (ex_is_op_sldu && sldu_ready_i);
assign ex_is_ext = ex_is_op_lsu || ex_is_op_sldu;
assign lsu_req_o = ex_is_op_lsu && (ext_this_state == EXT_REQ);
assign sldu_req_o = ex_is_op_sldu && (ext_this_state == EXT_REQ);
assign ext_instr_save_o = rd_is_ext && ex_pipe_en;
//assign lsu_req_o = ex_is_op_lsu && ex_busy;
//assign sldu_req_o = ex_is_op_sldu && ex_busy;
//########################################################################
///////////////////////
// RD stage
///////////////////////
always_ff @(posedge clk_i or negedge resetn_i) begin : vs_cnt_FF
if(~resetn_i) lane_vs_elem_cnt <= '0;
else begin
if(rd_busy) lane_vs_elem_cnt <= ((lane_vs_elem_cnt < (ELEMS-1)) && ~rd_stall) ? lane_vs_elem_cnt + 1 : lane_vs_elem_cnt;
else lane_vs_elem_cnt <= '0;
end
end
///////////////////////
// Address swap
///////////////////////
always_comb begin : argAddr
//What is this condition???
vrf_vs1_addr = (rd_instr_q.funct3 inside {OPIVV, OPMVV}) ? rd_instr_q.vs1_rs1_imm : 5'b00000;
if((rd_instr_q.funct6 inside {VSRA_VMADD, VSSRA_VNMSUB}) && (rd_alu_op_type == MULT)) begin
//Change the order of VS3(C) and VS2(B)
vrf_vs2_addr = rd_instr_q.vd_rd_vs3;
vrf_vs3_addr = rd_instr_q.vs2;
end else begin
vrf_vs2_addr = rd_instr_q.vs2;
vrf_vs3_addr = rd_instr_q.vd_rd_vs3;
end
end
assign rd_alu_op_type = (rd_instr_q.funct3 inside {OPMVV, OPMVX}) ? MULT : INT;
assign rd_pipe_ready = rd_busy && (lane_vs_elem_cnt == (ELEMS-1)); //Or only lane_vs_elem_cnt == (ELEMS-1)
assign vrf_rd_req = instr_req_i; //No, this happens to early vs rd_pipe_en. No valid address is present in rd_pipe
assign rd_instr_d = instr_i;
assign rd_pipe_en = instr_req_i;
assign rd_stall = ((~rd_is_op_piped && ex_is_op_piped) || (ex_is_ext && ~ext_ready && (ex_instr_q == rd_instr_q)));
assign rd_stall_ready = ex_alu_ready;
assign rd_is_op_mul = ((rd_instr_q.funct6 inside {VSLL_VMUL, VMULH, VMULHU, VMULHSU, VSSRA_VNMSUB
, VNSRA_VMACC, VNCLIP_VNMSAC ,VSRA_VMADD}) && (rd_instr_q.funct3 == OPMVV));
assign rd_is_op_div = ((rd_instr_q.funct6 inside {VDIV, VDIVU, VREMU, VREM}) && (rd_instr_q.funct3 == OPMVV));
assign rd_is_op_piped = rd_is_op_mul || rd_is_op_div ;
assign rd_is_c_used = (rd_instr_q.opcode == VSTORE) || (rd_instr_q.funct6 inside {VSRA_VMADD, VSSRA_VNMSUB, VNSRA_VMACC, VNCLIP_VNMSAC} && (rd_instr_q.funct3 == OPMVV));
assign rd_is_op_sldu = (rd_instr_q.funct6 inside {VSLIDEUP, VSLIDEDOWN}) ||
((rd_instr_q.funct6 == VADC) && ((rd_instr_q.funct3 == OPMVV) || (rd_instr_q.funct3 == OPMVX)) ||
rd_is_op_red);
assign rd_is_op_lsu = (rd_instr_q.opcode inside {VLOAD, VSTORE});
assign rd_is_op_red = ((rd_instr_q.funct6 inside {VADD_VREDSUM, VREDAND, VSUB_VREDOR, VRSUB_VREDXOR
, VMINU_VREDMINU, VMIN_VREDMIN, VMAXU_VREDMAXU, VMAX_VREDMAX}) && (rd_instr_q.funct3 == OPMVV));
assign rd_is_ext = rd_is_op_lsu || rd_is_op_sldu;
assign rd_is_mask_used = ~rd_instr_q.vm;
assign vrf_vs_elem_cnt = (rd_is_ext) ? ext_vs_elem_cnt_i : lane_vs_elem_cnt;
always_ff @(posedge clk_i or negedge resetn_i) begin : rd_busy_FF
if(~resetn_i) rd_busy <= 1'b0;
else if(vrf_rd_op_ready) rd_busy <= 1'b1;
//else if(rd_pipe_en) rd_busy <= 1'b1;
else if(rd_pipe_ready) rd_busy <= 1'b0;
end
always_ff @(posedge clk_i or negedge resetn_i) begin : RD_FF
if(~resetn_i) begin
rd_instr_q <= '0;
end
else if(rd_pipe_en) begin
rd_instr_q <= rd_instr_d;
end
end
//########################################################################
///////////////////////
// EX stage
///////////////////////
assign ex_alu_op_type = (ex_instr_q.funct3 inside {OPMVV, OPMVX}) ? MULT : INT;
assign ex_is_op_mul = ((ex_instr_q.funct6 inside {VSLL_VMUL, VMULH, VMULHU, VMULHSU, VSSRA_VNMSUB
, VNSRA_VMACC, VNCLIP_VNMSAC ,VSRA_VMADD}) && (ex_instr_q.funct3 == OPMVV));
assign ex_is_op_div = ((ex_instr_q.funct6 inside {VDIV, VDIVU, VREMU, VREM}) && (ex_instr_q.funct3 == OPMVV));
assign ex_is_op_piped = ex_is_op_mul || ex_is_op_div ; // Wait for the completion of currently running instr!;
assign ex_is_op_alu = ~ex_is_op_sldu && ~ex_is_op_lsu;
assign ex_is_op_sldu = (ex_instr_q.funct6 inside {VSLIDEUP, VSLIDEDOWN}) ||
((ex_instr_q.funct6 == VADC) && ((ex_instr_q.funct3 == OPMVV) || (ex_instr_q.funct3 == OPMVX)) ||
ex_is_op_red);
assign ex_is_op_lsu = (ex_instr_q.opcode inside {VLOAD, VSTORE});
assign ex_is_op_red = ((ex_instr_q.funct6 inside {VADD_VREDSUM, VREDAND, VSUB_VREDOR, VRSUB_VREDXOR
, VMINU_VREDMINU, VMIN_VREDMIN, VMAXU_VREDMAXU, VMAX_VREDMAX}) && (ex_instr_q.funct3 == OPMVV));
assign alu_b = vrf_vs2_rdata;
assign alu_c = vrf_vs3_rdata;
assign alu_mask_en = ((mask_bits_i[vrf_vs_elem_cnt] && (~ex_instr_q.vm)) || ex_instr_q.vm);
assign alu_valid = ex_is_op_alu;
assign ex_instr_d = rd_instr_q;
assign ex_alu_ready = (((~ex_is_op_piped && ex_busy) || ((ex_pipe_cnt == 1) && ex_is_op_piped) || (ex_is_ext && ext_ready)) );
assign ex_pipe_en = ((vrf_rd_op_ready && ~rd_stall && ~ex_is_ext) || (~ex_is_ext && rd_stall && vrf_wr_ready) || (ex_is_ext && vrf_rd_op_ready/*ext_ready*/));
//Why is it like this?
///////////////////////
// Exe pipe counter
///////////////////////
always_ff @(posedge clk_i or negedge resetn_i) begin : exe_cnt_FF
if(~resetn_i) ex_pipe_cnt <= '0;
else begin
//if(rd_pipe_ready) ex_pipe_cnt <= EX_PIPE_STAGES-1;
if(ex_pipe_en) ex_pipe_cnt <= EX_PIPE_STAGES-1;
else if(ex_is_op_piped) ex_pipe_cnt <= (ex_pipe_cnt > 0) ? (ex_pipe_cnt - 1) : ex_pipe_cnt;
end
end
///////////////////////
// Vs1 selection
///////////////////////
always_comb begin : argVectScalImm
unique case (ex_instr_q.funct3)
OPIVV,OPMVV : alu_a = vrf_vs1_rdata;
OPIVX,OPMVX : alu_a = rs1_rdata_i;
OPIVI : alu_a = {{(DATA_WIDTH-5){1'b0}}, ex_instr_q.vs1_rs1_imm};
default : alu_a = vrf_vs1_rdata;
endcase
end
///////////////////////
// Ext FSM for request and wait
///////////////////////
always_comb begin : ext_logic
case (ext_this_state)
EXT_IDLE : ext_next_state = (ex_is_ext && ex_busy) ? EXT_REQ : EXT_IDLE;
EXT_REQ : ext_next_state = EXT_WAIT;
EXT_WAIT : ext_next_state = ext_ready ? EXT_IDLE : EXT_WAIT;
default : ext_next_state = EXT_IDLE;
endcase
end
always_ff @( posedge clk_i or negedge resetn_i ) begin : ext_FSM
if(~resetn_i) begin
ext_this_state <= EXT_IDLE;
end
else begin
ext_this_state <= ext_next_state;
end
end
always_ff @(posedge clk_i or negedge resetn_i) begin : ex_busy_FF
if(~resetn_i) ex_busy <= 1'b0;
else begin
if(ex_pipe_en && ~ex_busy) ex_busy <= 1'b1;
else if(((ex_alu_ready && ~ex_is_ext) || (ext_ready && ex_is_ext)) && ex_busy) ex_busy <= 1'b0;
end
end
always_ff @(posedge clk_i or negedge resetn_i) begin : EX_FF
if(~resetn_i) begin
ex_instr_q <= '0;
end
else if(ex_pipe_en) begin
ex_instr_q <= ex_instr_d;
end
end
//########################################################################
///////////////////////
// WB stage
///////////////////////
assign vrf_wr_req = (ex_alu_ready && ~ex_is_ext) || ext_ready; //Set when ALU is ready - but one cycle later!
assign vrf_wr_ready = wb_pipe_ready; //Set at the last element
assign vrf_vd_addr = wb_instr_d.vd_rd_vs3;
assign wb_instr_d = ex_instr_q;
assign wb_is_op_piped = ex_is_op_mul || ex_is_op_div ;
//This (wb_pipe_en) is only for one cycle - not 4!
//Create ALU ready signal. This will also set the wb_busy.
//wb_busy is reset when wb_pipe_ready is set
assign wb_pipe_en = ((ex_alu_ready && ex_is_op_alu && ~rd_stall && ~ex_is_ext) || (ex_is_ext && (ext_this_state == EXT_REQ)));
assign wb_pipe_ready = (wb_busy && (lane_vd_elem_cnt == ELEMS-1)) || ext_ready;
///////////////////////
// Writeback data selection
///////////////////////
always_comb begin : wbDataSel
if(ex_is_ext) vrf_vd_wdata = ext_vd_wdata_i; //For slide operations, take wdata from SLIDE unit
else vrf_vd_wdata = alu_result;
end
///////////////////////
// Writeback data bit counting
///////////////////////
bit_counter #(
.DATA_WIDTH(DATA_WIDTH),
.SBIT_CNT_B(SBIT_CNT_B)
) VRF_BITS_CNT(
.clk_i(clk_i),
.resetn_i(resetn_i),
.data_i(vrf_vd_wdata),
.enable_i(vrf_vd_wr_en),
.sbit_cnt_o(sbit_cnt_o)
);
always_comb begin : elemCntSel
if(ex_is_ext) begin
//vrf_vs_elem_cnt =ext_vs_elem_cnt_i;
vrf_vd_elem_cnt = ext_vd_elem_cnt_i;
vrf_vd_wr_en = ext_vd_wr_en_i;
end
else begin
//vrf_vs_elem_cnt = lane_vs_elem_cnt;
vrf_vd_elem_cnt = lane_vd_elem_cnt;
//vrf_vd_wr_en = ((mask_bits_i[vrf_vd_elem_cnt] && (~wb_instr_q.vm)) || wb_instr_q.vm) && wb_busy;
vrf_vd_wr_en = alu_mask_en && (wb_busy || wb_pipe_en);
end
end
always_ff @(posedge clk_i or negedge resetn_i) begin : wb_busy_FF
if(~resetn_i) wb_busy <= 1'b0;
else if((ex_alu_ready) || (ex_is_ext && (ext_this_state == EXT_REQ))) wb_busy <= 1'b1;
//else if(wb_pipe_en) wb_busy <= 1'b1;
else if(wb_pipe_ready) wb_busy <= 1'b0; //But what happens if wb_pipe_ready is set but ex_alu_ready is also set?
end
always_ff @(posedge clk_i or negedge resetn_i) begin : vd_cnt_FF
if(~resetn_i) lane_vd_elem_cnt <= '0;
else begin
if(wb_busy || (wb_pipe_en && ~ex_is_op_piped)) lane_vd_elem_cnt <= (lane_vd_elem_cnt < (ELEMS-1)) ? lane_vd_elem_cnt + 1 : lane_vd_elem_cnt;
else lane_vd_elem_cnt <= '0;
end
end
always_ff @(posedge clk_i or negedge resetn_i) begin : WB_FF
if(~resetn_i) begin
wb_instr_q <= '0;
end
else if(wb_pipe_en) begin
wb_instr_q <= wb_instr_d;
end
end
///////////////////////
// Instruction register
///////////////////////
always_ff @(posedge clk_i or negedge resetn_i) begin : instrFF
if(!resetn_i) instr_running <= '0;
else if(instr_req_i) instr_running <= instr_i;
end
assign mask_bits_o = vrf_mask_rdata;
///////////////////////
// External registers
///////////////////////
always_ff @(posedge clk_i or negedge resetn_i) begin : extArgPipe
if(!resetn_i) begin
ext_vs1_rdata_reg_q <= 0;
ext_vs2_rdata_reg_q <= 0;
ext_vs3_rdata_reg_q <= 0;
end
else if(ext_reg_wr_en) begin
ext_vs1_rdata_reg_q <= vrf_vs1_rdata;
ext_vs2_rdata_reg_q <= vrf_vs2_rdata;
ext_vs3_rdata_reg_q <= vrf_vs3_rdata;
end
end
assign ext_reg_wr_en = rd_is_ext && ex_pipe_en;
assign ext_vs1_rdata_o = vrf_vs1_rdata;//ext_vs1_rdata_reg_q;
assign ext_vs2_rdata_o = vrf_vs2_rdata;//ext_vs2_rdata_reg_q;
assign ext_vs3_rdata_o = vrf_vs3_rdata;//ext_vs3_rdata_reg_q;
always_ff @(posedge clk_i or negedge resetn_i) begin : rs1Pipe
if(!resetn_i) begin
rs1_rdata_reg_q <= 0;
end
else if(instr_req_i) begin
rs1_rdata_reg_q <= rs1_rdata_i;
end
end
///////////////////////
// ALU
///////////////////////
ALU #(
.DATA_WIDTH(DATA_WIDTH),
.PIPE_ST(PIPE_ST)
) valu(
.clk_i(clk_i),
.resetn_i(resetn_i),
.valid_i(alu_valid),
.mask_e_i(alu_mask_en),
.a_i(alu_a),
.b_i(alu_b),
.c_i(alu_c),
.ocode_i({ex_instr_q.funct6, ex_alu_op_type}),
.alu_q_o(alu_result)
);
///////////////////////
// Register file
///////////////////////
VRF_latch RF(
.clk_i(clk_i),
.resetn_i(resetn_i),
.a_addr_i(vrf_vs1_addr),
.b_addr_i(vrf_vs2_addr),
.c_addr_i(vrf_vs3_addr),
.wr_addr_i(vrf_vd_addr),
.rd_elem_cnt_i(vrf_vs_elem_cnt),
.wr_elem_cnt_i(vrf_vd_elem_cnt),
.wr_req_i(vrf_wr_req),
.wr_en_i(vrf_vd_wr_en),
.wr_ready_i(vrf_wr_ready),
.wdata_i(vrf_vd_wdata),
.rd_req_i(vrf_rd_req),
.is_c_used_i(rd_is_c_used),
.rd_op_ready_o(vrf_rd_op_ready),
.a_rdata_o(vrf_vs1_rdata),
.b_rdata_o(vrf_vs2_rdata),
.c_rdata_o(vrf_vs3_rdata),
.is_mask_used_i(rd_is_mask_used),
.mask_rdata_o(vrf_mask_rdata)
);
endmodule