forked from AlexeyAB/darknet
-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathcrop_layer_kernels.cu
225 lines (192 loc) · 6.5 KB
/
crop_layer_kernels.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#include "cuda_runtime.h"
#include "curand.h"
#include "cublas_v2.h"
extern "C" {
#include "crop_layer.h"
#include "utils.h"
#include "cuda.h"
#include "image.h"
}
__device__ float get_pixel_kernel(float *image, int w, int h, int x, int y, int c)
{
if(x < 0 || x >= w || y < 0 || y >= h) return 0;
return image[x + w*(y + c*h)];
}
__device__ float3 rgb_to_hsv_kernel(float3 rgb)
{
float r = rgb.x;
float g = rgb.y;
float b = rgb.z;
float h, s, v;
float max = (r > g) ? ( (r > b) ? r : b) : ( (g > b) ? g : b);
float min = (r < g) ? ( (r < b) ? r : b) : ( (g < b) ? g : b);
float delta = max - min;
v = max;
if(max == 0){
s = 0;
h = -1;
}else{
s = delta/max;
if(r == max){
h = (g - b) / delta;
} else if (g == max) {
h = 2 + (b - r) / delta;
} else {
h = 4 + (r - g) / delta;
}
if (h < 0) h += 6;
}
return make_float3(h, s, v);
}
__device__ float3 hsv_to_rgb_kernel(float3 hsv)
{
float h = hsv.x;
float s = hsv.y;
float v = hsv.z;
float r, g, b;
float f, p, q, t;
if (s == 0) {
r = g = b = v;
} else {
int index = (int) floorf(h);
f = h - index;
p = v*(1-s);
q = v*(1-s*f);
t = v*(1-s*(1-f));
if(index == 0){
r = v; g = t; b = p;
} else if(index == 1){
r = q; g = v; b = p;
} else if(index == 2){
r = p; g = v; b = t;
} else if(index == 3){
r = p; g = q; b = v;
} else if(index == 4){
r = t; g = p; b = v;
} else {
r = v; g = p; b = q;
}
}
r = (r < 0) ? 0 : ((r > 1) ? 1 : r);
g = (g < 0) ? 0 : ((g > 1) ? 1 : g);
b = (b < 0) ? 0 : ((b > 1) ? 1 : b);
return make_float3(r, g, b);
}
__device__ float bilinear_interpolate_kernel(float *image, int w, int h, float x, float y, int c)
{
int ix = (int) floorf(x);
int iy = (int) floorf(y);
float dx = x - ix;
float dy = y - iy;
float val = (1-dy) * (1-dx) * get_pixel_kernel(image, w, h, ix, iy, c) +
dy * (1-dx) * get_pixel_kernel(image, w, h, ix, iy+1, c) +
(1-dy) * dx * get_pixel_kernel(image, w, h, ix+1, iy, c) +
dy * dx * get_pixel_kernel(image, w, h, ix+1, iy+1, c);
return val;
}
__global__ void levels_image_kernel(float *image, float *rand, int batch, int w, int h, int train, float saturation, float exposure, float translate, float scale, float shift)
{
int size = batch * w * h;
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if(id >= size) return;
int x = id % w;
id /= w;
int y = id % h;
id /= h;
float rshift = rand[0];
float gshift = rand[1];
float bshift = rand[2];
float r0 = rand[8*id + 0];
float r1 = rand[8*id + 1];
float r2 = rand[8*id + 2];
float r3 = rand[8*id + 3];
saturation = r0*(saturation - 1) + 1;
saturation = (r1 > .5) ? 1./saturation : saturation;
exposure = r2*(exposure - 1) + 1;
exposure = (r3 > .5) ? 1./exposure : exposure;
size_t offset = id * h * w * 3;
image += offset;
float r = image[x + w*(y + h*0)];
float g = image[x + w*(y + h*1)];
float b = image[x + w*(y + h*2)];
float3 rgb = make_float3(r,g,b);
if(train){
float3 hsv = rgb_to_hsv_kernel(rgb);
hsv.y *= saturation;
hsv.z *= exposure;
rgb = hsv_to_rgb_kernel(hsv);
} else {
shift = 0;
}
image[x + w*(y + h*0)] = rgb.x*scale + translate + (rshift - .5)*shift;
image[x + w*(y + h*1)] = rgb.y*scale + translate + (gshift - .5)*shift;
image[x + w*(y + h*2)] = rgb.z*scale + translate + (bshift - .5)*shift;
}
__global__ void forward_crop_layer_kernel(float *input, float *rand, int size, int c, int h, int w, int crop_height, int crop_width, int train, int flip, float angle, float *output)
{
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if(id >= size) return;
float cx = w/2.;
float cy = h/2.;
int count = id;
int j = id % crop_width;
id /= crop_width;
int i = id % crop_height;
id /= crop_height;
int k = id % c;
id /= c;
int b = id;
float r4 = rand[8*b + 4];
float r5 = rand[8*b + 5];
float r6 = rand[8*b + 6];
float r7 = rand[8*b + 7];
float dw = (w - crop_width)*r4;
float dh = (h - crop_height)*r5;
flip = (flip && (r6 > .5));
angle = 2*angle*r7 - angle;
if(!train){
dw = (w - crop_width)/2.;
dh = (h - crop_height)/2.;
flip = 0;
angle = 0;
}
input += w*h*c*b;
float x = (flip) ? w - dw - j - 1 : j + dw;
float y = i + dh;
float rx = cos(angle)*(x-cx) - sin(angle)*(y-cy) + cx;
float ry = sin(angle)*(x-cx) + cos(angle)*(y-cy) + cy;
output[count] = bilinear_interpolate_kernel(input, w, h, rx, ry, k);
}
extern "C" void forward_crop_layer_gpu(crop_layer layer, network_state state)
{
cuda_random(layer.rand_gpu, layer.batch*8);
float radians = layer.angle*3.14159265/180.;
float scale = 2;
float translate = -1;
if(layer.noadjust){
scale = 1;
translate = 0;
}
int size = layer.batch * layer.w * layer.h;
levels_image_kernel<<<cuda_gridsize(size), BLOCK>>>(state.input, layer.rand_gpu, layer.batch, layer.w, layer.h, state.train, layer.saturation, layer.exposure, translate, scale, layer.shift);
check_error(cudaPeekAtLastError());
size = layer.batch*layer.c*layer.out_w*layer.out_h;
forward_crop_layer_kernel<<<cuda_gridsize(size), BLOCK>>>(state.input, layer.rand_gpu, size, layer.c, layer.h, layer.w, layer.out_h, layer.out_w, state.train, layer.flip, radians, layer.output_gpu);
check_error(cudaPeekAtLastError());
/*
cuda_pull_array(layer.output_gpu, layer.output, size);
image im = float_to_image(layer.crop_width, layer.crop_height, layer.c, layer.output + 0*(size/layer.batch));
image im2 = float_to_image(layer.crop_width, layer.crop_height, layer.c, layer.output + 1*(size/layer.batch));
image im3 = float_to_image(layer.crop_width, layer.crop_height, layer.c, layer.output + 2*(size/layer.batch));
translate_image(im, -translate);
scale_image(im, 1/scale);
translate_image(im2, -translate);
scale_image(im2, 1/scale);
translate_image(im3, -translate);
scale_image(im3, 1/scale);
show_image(im, "cropped");
show_image(im2, "cropped2");
show_image(im3, "cropped3");
cvWaitKey(0);
*/
}