forked from AlexeyAB/darknet
-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathnetwork.h
156 lines (136 loc) · 4.39 KB
/
network.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
// Oh boy, why am I about to do this....
#ifndef NETWORK_H
#define NETWORK_H
#include <stdint.h>
#include "layer.h"
#ifdef __cplusplus
extern "C" {
#endif
#include "image.h"
#include "data.h"
#include "tree.h"
typedef enum {
CONSTANT, STEP, EXP, POLY, STEPS, SIG, RANDOM
} learning_rate_policy;
typedef struct network{
float *workspace;
int n;
int batch;
int *seen;
float epoch;
int subdivisions;
float momentum;
float decay;
layer *layers;
int outputs;
float *output;
learning_rate_policy policy;
float learning_rate;
float gamma;
float scale;
float power;
int time_steps;
int step;
int max_batches;
float *scales;
int *steps;
int num_steps;
int burn_in;
int adam;
float B1;
float B2;
float eps;
int inputs;
int h, w, c;
int max_crop;
int min_crop;
int flip; // horizontal flip 50% probability augmentaiont for classifier training (default = 1)
float angle;
float aspect;
float exposure;
float saturation;
float hue;
int small_object;
int gpu_index;
tree *hierarchy;
#ifdef GPU
float **input_gpu;
float **truth_gpu;
float **input16_gpu;
float **output16_gpu;
size_t *max_input16_size;
size_t *max_output16_size;
int wait_stream;
#endif
} network;
typedef struct network_state {
float *truth;
float *input;
float *delta;
float *workspace;
int train;
int index;
network net;
} network_state;
#ifdef GPU
float train_networks(network *nets, int n, data d, int interval);
void sync_nets(network *nets, int n, int interval);
float train_network_datum_gpu(network net, float *x, float *y);
float *network_predict_gpu(network net, float *input);
float * get_network_output_gpu_layer(network net, int i);
float * get_network_delta_gpu_layer(network net, int i);
float *get_network_output_gpu(network net);
void forward_network_gpu(network net, network_state state);
void backward_network_gpu(network net, network_state state);
void update_network_gpu(network net);
#endif
float get_current_rate(network net);
int get_current_batch(network net);
void free_network(network net);
void compare_networks(network n1, network n2, data d);
char *get_layer_string(LAYER_TYPE a);
network make_network(int n);
void forward_network(network net, network_state state);
void backward_network(network net, network_state state);
void update_network(network net);
float train_network(network net, data d);
float train_network_batch(network net, data d, int n);
float train_network_sgd(network net, data d, int n);
float train_network_datum(network net, float *x, float *y);
matrix network_predict_data(network net, data test);
YOLODLL_API float *network_predict(network net, float *input);
float network_accuracy(network net, data d);
float *network_accuracies(network net, data d, int n);
float network_accuracy_multi(network net, data d, int n);
void top_predictions(network net, int n, int *index);
float *get_network_output(network net);
float *get_network_output_layer(network net, int i);
float *get_network_delta_layer(network net, int i);
float *get_network_delta(network net);
int get_network_output_size_layer(network net, int i);
int get_network_output_size(network net);
image get_network_image(network net);
image get_network_image_layer(network net, int i);
int get_predicted_class_network(network net);
void print_network(network net);
void visualize_network(network net);
int resize_network(network *net, int w, int h);
void set_batch_network(network *net, int b);
int get_network_input_size(network net);
float get_network_cost(network net);
YOLODLL_API detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter);
YOLODLL_API detection *make_network_boxes(network *net, float thresh, int *num);
YOLODLL_API void free_detections(detection *dets, int n);
YOLODLL_API void reset_rnn(network *net);
YOLODLL_API network *load_network(char *cfg, char *weights, int clear);
YOLODLL_API float *network_predict_image(network *net, image im);
YOLODLL_API void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show);
YOLODLL_API int network_width(network *net);
YOLODLL_API int network_height(network *net);
int get_network_nuisance(network net);
int get_network_background(network net);
void fuse_conv_batchnorm(network net);
#ifdef __cplusplus
}
#endif
#endif