-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdata.py
162 lines (126 loc) · 4.61 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from nltk import word_tokenize
from collections import Counter
from nltk.corpus import stopwords
import numpy as np
import os
import xml.etree.ElementTree as ET
import html
import HTMLParser
import re
stop = set(stopwords.words('english'))
def load_embedding_file(embed_file_name, word_set):
''' loads embedding file and returns a dictionary (word -> embedding) for the words existing in the word_set '''
embeddings = {}
with open(embed_file_name, 'r') as embed_file:
for line in embed_file:
content = line.strip().split()
word = content[0]
if word in word_set:
embedding = np.array(content[1:], dtype=float)
embeddings[word] = embedding
return embeddings
def get_dataset_resources(data_file_name, sent_word2idx, target_word2idx, word_set, max_sent_len):
''' updates word2idx and word_set '''
if len(sent_word2idx) == 0:
sent_word2idx["<pad>"] = 0
word_count = []
sent_word_count = []
target_count = []
words = []
sentence_words = []
target_words = []
with open(data_file_name, 'r') as data_file:
lines = data_file.read().split('\n')
for line_no in range(0, len(lines)-1, 3):
sentence = lines[line_no]
target = lines[line_no+1]
sentence.replace("$T$", "")
sentence = sentence.lower()
target = target.lower()
max_sent_len = max(max_sent_len, len(sentence.split()))
sentence_words.extend(sentence.split())
target_words.extend([target])
words.extend(sentence.split() + target.split())
sent_word_count.extend(Counter(sentence_words).most_common())
target_count.extend(Counter(target_words).most_common())
word_count.extend(Counter(words).most_common())
for word, _ in sent_word_count:
if word not in sent_word2idx:
sent_word2idx[word] = len(sent_word2idx)
for target, _ in target_count:
if target not in target_word2idx:
target_word2idx[target] = len(target_word2idx)
for word, _ in word_count:
if word not in word_set:
word_set[word] = 1
return max_sent_len
def get_embedding_matrix(embeddings, sent_word2idx, target_word2idx, edim):
''' returns the word and target embedding matrix '''
word_embed_matrix = np.zeros([len(sent_word2idx), edim], dtype = float)
target_embed_matrix = np.zeros([len(target_word2idx), edim], dtype = float)
for word in sent_word2idx:
if word in embeddings:
word_embed_matrix[sent_word2idx[word]] = embeddings[word]
for target in target_word2idx:
for word in target:
if word in embeddings:
target_embed_matrix[target_word2idx[target]] += embeddings[word]
target_embed_matrix[target_word2idx[target]] /= max(1, len(target.split()))
print type(word_embed_matrix)
return word_embed_matrix, target_embed_matrix
def get_dataset(data_file_name, sent_word2idx, target_word2idx, embeddings):
''' returns the dataset'''
sentence_list = []
location_list = []
target_list = []
polarity_list = []
with open(data_file_name, 'r') as data_file:
lines = data_file.read().split('\n')
for line_no in range(0, len(lines)-1, 3):
sentence = lines[line_no].lower()
target = lines[line_no+1].lower()
polarity = int(lines[line_no+2])
sent_words = sentence.split()
target_words = target.split()
try:
target_location = sent_words.index("$t$")
except:
print "sentence does not contain target element tag"
exit()
is_included_flag = 1
id_tokenised_sentence = []
location_tokenised_sentence = []
for index, word in enumerate(sent_words):
if word == "$t$":
continue
try:
word_index = sent_word2idx[word]
except:
print "id not found for word in the sentence"
exit()
location_info = abs(index - target_location)
if word in embeddings:
id_tokenised_sentence.append(word_index)
location_tokenised_sentence.append(location_info)
# if word not in embeddings:
# is_included_flag = 0
# break
is_included_flag = 0
for word in target_words:
if word in embeddings:
is_included_flag = 1
break
try:
target_index = target_word2idx[target]
except:
print target
print "id not found for target"
exit()
if not is_included_flag:
print sentence
continue
sentence_list.append(id_tokenised_sentence)
location_list.append(location_tokenised_sentence)
target_list.append(target_index)
polarity_list.append(polarity)
return sentence_list, location_list, target_list, polarity_list