-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathtest_core_transformers.py
590 lines (488 loc) · 21.4 KB
/
test_core_transformers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
# Copyright 2019 IBM Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from test import EnableSchemaValidation
from typing import Any
import jsonschema
import pandas as pd
from packaging import version
import lale.lib.lale
import lale.lib.sklearn
import lale.type_checking
from lale.datasets import pandas2spark
from lale.datasets.data_schemas import add_table_name, get_table_name
from lale.helpers import spark_installed
from lale.lib.lale import ConcatFeatures
from lale.lib.sklearn import (
NMF,
PCA,
RFE,
FunctionTransformer,
LogisticRegression,
MissingIndicator,
Nystroem,
)
from lale.lib.sklearn import TargetEncoder as SkTargetEncoder
from lale.lib.sklearn import (
TfidfVectorizer,
)
from lale.operators import sklearn_version
class TestFeaturePreprocessing(unittest.TestCase):
def setUp(self):
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
data = load_iris()
X, y = data.data, data.target
self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(X, y)
def create_function_test_feature_preprocessor(fproc_name):
def test_feature_preprocessor(self):
X_train, y_train = self.X_train, self.y_train
import importlib
module_name = ".".join(fproc_name.split(".")[0:-1])
class_name = fproc_name.split(".")[-1]
module = importlib.import_module(module_name)
class_ = getattr(module, class_name)
fproc = class_()
from lale.lib.sklearn.one_hot_encoder import OneHotEncoder
if isinstance(fproc, OneHotEncoder): # type: ignore
# fproc = OneHotEncoder(handle_unknown = 'ignore')
# remove the hack when this is fixed
fproc = PCA()
# test_schemas_are_schemas
lale.type_checking.validate_is_schema(fproc.input_schema_fit())
lale.type_checking.validate_is_schema(fproc.input_schema_transform())
lale.type_checking.validate_is_schema(fproc.output_schema_transform())
lale.type_checking.validate_is_schema(fproc.hyperparam_schema())
# test_init_fit_transform
trained = fproc.fit(self.X_train, self.y_train)
_ = trained.transform(self.X_test)
# test_predict_on_trainable
trained = fproc.fit(X_train, y_train)
fproc.transform(X_train)
# test_to_json
fproc.to_json()
# test_in_a_pipeline
# This test assumes that the output of feature processing is compatible with LogisticRegression
pipeline = fproc >> LogisticRegression()
trained = pipeline.fit(self.X_train, self.y_train)
_ = trained.predict(self.X_test)
# Tune the pipeline with LR using Hyperopt
from lale.lib.lale import Hyperopt
hyperopt = Hyperopt(estimator=pipeline, max_evals=1, verbose=True, cv=3)
trained = hyperopt.fit(self.X_train, self.y_train)
_ = trained.predict(self.X_test)
test_feature_preprocessor.__name__ = f"test_{fproc_name.split('.')[-1]}"
return test_feature_preprocessor
feature_preprocessors = [
"lale.lib.sklearn.PolynomialFeatures",
"lale.lib.sklearn.PCA",
"lale.lib.sklearn.Nystroem",
"lale.lib.sklearn.Normalizer",
"lale.lib.sklearn.MinMaxScaler",
"lale.lib.sklearn.OneHotEncoder",
"lale.lib.sklearn.SimpleImputer",
"lale.lib.sklearn.StandardScaler",
"lale.lib.sklearn.FeatureAgglomeration",
"lale.lib.sklearn.RobustScaler",
"lale.lib.sklearn.QuantileTransformer",
"lale.lib.sklearn.VarianceThreshold",
"lale.lib.sklearn.Isomap",
]
for fproc_to_test in feature_preprocessors:
setattr(
TestFeaturePreprocessing,
f"test_{fproc_to_test.rsplit('.', maxsplit=1)[-1]}",
create_function_test_feature_preprocessor(fproc_to_test),
)
class TestNMF(unittest.TestCase):
def test_init_fit_predict(self):
from lale.datasets import digits_df
nmf = NMF()
lr = LogisticRegression()
trainable = nmf >> lr
(train_X, train_y), (test_X, _test_y) = digits_df()
trained = trainable.fit(train_X, train_y)
_ = trained.predict(test_X)
def test_not_randome_state(self):
with EnableSchemaValidation():
with self.assertRaises(jsonschema.ValidationError):
_ = NMF(random_state='"not RandomState"')
class TestFunctionTransformer(unittest.TestCase):
def test_init_fit_predict(self):
import numpy as np
from lale.datasets import digits_df
ft = FunctionTransformer(func=np.log1p)
lr = LogisticRegression()
trainable = ft >> lr
(train_X, train_y), (test_X, _test_y) = digits_df()
trained = trainable.fit(train_X, train_y)
_ = trained.predict(test_X)
def test_not_callable(self):
with EnableSchemaValidation():
with self.assertRaises(jsonschema.ValidationError):
_ = FunctionTransformer(func='"not callable"')
class TestMissingIndicator(unittest.TestCase):
def test_init_fit_transform(self):
import numpy as np
X1 = np.array([[np.nan, 1, 3], [4, 0, np.nan], [8, 1, 0]])
X2 = np.array([[5, 1, np.nan], [np.nan, 2, 3], [2, 4, 0]])
trainable = MissingIndicator()
trained = trainable.fit(X1)
transformed = trained.transform(X2)
expected = np.array([[False, True], [True, False], [False, False]])
self.assertTrue((transformed == expected).all())
class TestRFE(unittest.TestCase):
def test_init_fit_predict(self):
import sklearn.datasets
import sklearn.svm
svm = lale.lib.sklearn.SVR(kernel="linear")
rfe = RFE(estimator=svm, n_features_to_select=2)
lr = LogisticRegression()
trainable = rfe >> lr
data = sklearn.datasets.load_iris()
X, y = data.data, data.target
trained = trainable.fit(X, y)
_ = trained.predict(X)
def test_init_fit_predict_sklearn(self):
import sklearn.datasets
import sklearn.svm
svm = sklearn.svm.SVR(kernel="linear")
rfe = RFE(estimator=svm, n_features_to_select=2)
lr = LogisticRegression()
trainable = rfe >> lr
data = sklearn.datasets.load_iris()
X, y = data.data, data.target
trained = trainable.fit(X, y)
_ = trained.predict(X)
def test_not_operator(self):
with EnableSchemaValidation():
with self.assertRaises(jsonschema.ValidationError):
_ = RFE(estimator='"not an operator"', n_features_to_select=2)
def test_attrib_sklearn(self):
import sklearn.datasets
import sklearn.svm
svm = sklearn.svm.SVR(kernel="linear")
rfe = RFE(estimator=svm, n_features_to_select=2)
lr = LogisticRegression()
trainable = rfe >> lr
data = sklearn.datasets.load_iris()
X, y = data.data, data.target
trained = trainable.fit(X, y)
_ = trained.predict(X)
from lale.lib.lale import Hyperopt
opt = Hyperopt(estimator=trainable, max_evals=2, verbose=True)
opt.fit(X, y)
def test_attrib(self):
import sklearn.datasets
svm = lale.lib.sklearn.SVR(kernel="linear")
rfe = RFE(estimator=svm, n_features_to_select=2)
lr = LogisticRegression()
trainable = rfe >> lr
data = sklearn.datasets.load_iris()
X, y = data.data, data.target
trained = trainable.fit(X, y)
_ = trained.predict(X)
from lale.lib.lale import Hyperopt
opt = Hyperopt(estimator=trainable, max_evals=2, verbose=True)
opt.fit(X, y)
class TestOrdinalEncoder(unittest.TestCase):
def setUp(self):
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
data = load_iris()
X, y = data.data, data.target
self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(X, y)
def test_with_hyperopt(self):
from lale.lib.sklearn import OrdinalEncoder
fproc = OrdinalEncoder(handle_unknown="ignore")
pipeline = fproc >> LogisticRegression()
# Tune the pipeline with LR using Hyperopt
from lale.lib.lale import Hyperopt
hyperopt = Hyperopt(estimator=pipeline, max_evals=1)
trained = hyperopt.fit(self.X_train, self.y_train)
_ = trained.predict(self.X_test)
def test_inverse_transform(self):
from lale.lib.sklearn import OneHotEncoder, OrdinalEncoder
fproc_ohe = OneHotEncoder(handle_unknown="ignore")
# test_init_fit_transform
trained_ohe = fproc_ohe.fit(self.X_train, self.y_train)
transformed_X = trained_ohe.transform(self.X_test)
orig_X_ohe = trained_ohe._impl._wrapped_model.inverse_transform(transformed_X)
fproc_oe = OrdinalEncoder(handle_unknown="ignore")
# test_init_fit_transform
trained_oe = fproc_oe.fit(self.X_train, self.y_train)
transformed_X = trained_oe.transform(self.X_test)
orig_X_oe = trained_oe._impl.inverse_transform(transformed_X)
self.assertEqual(orig_X_ohe.all(), orig_X_oe.all())
def test_handle_unknown_error(self):
from lale.lib.sklearn import OrdinalEncoder
fproc_oe = OrdinalEncoder(handle_unknown="error")
# test_init_fit_transform
trained_oe = fproc_oe.fit(self.X_train, self.y_train)
with self.assertRaises(
ValueError
): # This is repying on the train_test_split, so may fail randomly
_ = trained_oe.transform(self.X_test)
def test_encode_unknown_with(self):
from lale.lib.sklearn import OrdinalEncoder
fproc_oe = OrdinalEncoder(handle_unknown="ignore", encode_unknown_with=1000)
# test_init_fit_transform
trained_oe = fproc_oe.fit(self.X_train, self.y_train)
transformed_X = trained_oe.transform(self.X_test)
# This is repying on the train_test_split, so may fail randomly
self.assertTrue(1000 in transformed_X)
# Testing that inverse_transform works even for encode_unknown_with=1000
_ = trained_oe._impl.inverse_transform(transformed_X)
class TestTargetEncoder(unittest.TestCase):
def test_sklearn_target_encoder(self):
import numpy as np
X = np.array([["dog"] * 20 + ["cat"] * 30 + ["snake"] * 38], dtype=object).T
y = [90.3] * 5 + [80.1] * 15 + [20.4] * 5 + [20.1] * 25 + [21.2] * 8 + [49] * 30
if sklearn_version < version.Version("1.3"):
with self.assertRaises(NotImplementedError):
enc_auto = SkTargetEncoder(smooth="auto")
_ = enc_auto.fit_transform(X, y)
else:
# example from the TargetEncoder documentation
enc_auto = SkTargetEncoder(smooth="auto")
_ = enc_auto.fit_transform(X, y)
class TestConcatFeatures(unittest.TestCase):
def test_hyperparam_defaults(self):
_ = ConcatFeatures()
def test_init_fit_predict(self):
trainable_cf = ConcatFeatures()
A = [[11, 12, 13], [21, 22, 23], [31, 32, 33]]
B = [[14, 15], [24, 25], [34, 35]]
trained_cf = trainable_cf.fit(X=[A, B])
transformed: Any = trained_cf.transform([A, B])
expected = [[11, 12, 13, 14, 15], [21, 22, 23, 24, 25], [31, 32, 33, 34, 35]]
for transformed_sample, expected_sample in zip(transformed, expected):
for transformed_feature, expected_feature in zip(
transformed_sample, expected_sample
):
self.assertEqual(transformed_feature, expected_feature)
def test_init_fit_predict_pandas(self):
trainable_cf = ConcatFeatures()
A = [[11, 12, 13], [21, 22, 23], [31, 32, 33]]
B = [[14, 15], [24, 25], [34, 35]]
A = pd.DataFrame(A, columns=["a", "b", "c"]).rename_axis(index="idx")
B = pd.DataFrame(B, columns=["d", "e"]).rename_axis(index="idx")
A = add_table_name(A, "A")
B = add_table_name(B, "B")
trained_cf = trainable_cf.fit(X=[A, B])
transformed = trained_cf.transform([A, B])
self.assertEqual(transformed.index.name, "idx")
expected = [
[11, 12, 13, 14, 15],
[21, 22, 23, 24, 25],
[31, 32, 33, 34, 35],
]
expected = pd.DataFrame(expected, columns=["a", "b", "c", "d", "e"])
for c in expected.columns:
self.assertEqual(list(transformed[c]), list(expected[c]))
def test_init_fit_predict_pandas_series(self):
trainable_cf = ConcatFeatures()
A = [[11, 12, 13], [21, 22, 23], [31, 32, 33]]
B = [14, 24, 34]
A = pd.DataFrame(A, columns=["a", "b", "c"])
B = pd.Series(B, name="d")
A = add_table_name(A, "A")
B = add_table_name(B, "B")
trained_cf = trainable_cf.fit(X=[A, B])
transformed = trained_cf.transform([A, B])
expected = [
[11, 12, 13, 14],
[21, 22, 23, 24],
[31, 32, 33, 34],
]
expected = pd.DataFrame(expected, columns=["a", "b", "c", "d"])
for c in expected.columns:
self.assertEqual(list(transformed[c]), list(expected[c]))
def test_init_fit_predict_spark(self):
if spark_installed:
trainable_cf = ConcatFeatures()
A = [[11, 12, 13], [21, 22, 23], [31, 32, 33]]
B = [[14, 15], [24, 25], [34, 35]]
A = pd.DataFrame(A, columns=["a", "b", "c"])
B = pd.DataFrame(B, columns=["d", "e"])
A = pandas2spark(A.rename_axis(index="idx"))
B = pandas2spark(B.rename_axis(index="idx"))
A = add_table_name(A, "A")
B = add_table_name(B, "B")
trained_cf = trainable_cf.fit(X=[A, B])
transformed = trained_cf.transform([A, B]).toPandas()
self.assertEqual(transformed.index.name, "idx")
expected = [
[11, 12, 13, 14, 15],
[21, 22, 23, 24, 25],
[31, 32, 33, 34, 35],
]
expected = pd.DataFrame(expected, columns=["a", "b", "c", "d", "e"])
for c in expected.columns:
self.assertEqual(list(transformed[c]), list(expected[c]))
def test_init_fit_predict_spark_pandas(self):
if spark_installed:
trainable_cf = ConcatFeatures()
A = [[11, 12, 13], [21, 22, 23], [31, 32, 33]]
B = [[14, 15], [24, 25], [34, 35]]
A = pd.DataFrame(A, columns=["a", "b", "c"])
B = pd.DataFrame(B, columns=["d", "e"])
A = pandas2spark(A)
A = add_table_name(A, "A")
B = add_table_name(B, "B")
trained_cf = trainable_cf.fit(X=[A, B])
transformed = trained_cf.transform([A, B])
expected = [
[11, 12, 13, 14, 15],
[21, 22, 23, 24, 25],
[31, 32, 33, 34, 35],
]
expected = pd.DataFrame(expected, columns=["a", "b", "c", "d", "e"])
for c in expected.columns:
self.assertEqual(list(transformed[c]), list(expected[c]))
def test_init_fit_predict_spark_no_table_name(self):
if spark_installed:
trainable_cf = ConcatFeatures()
A = [[11, 12, 13], [21, 22, 23], [31, 32, 33]]
B = [[14, 15], [24, 25], [34, 35]]
A = pd.DataFrame(A, columns=["a", "b", "c"])
B = pd.DataFrame(B, columns=["d", "e"])
A = pandas2spark(A)
B = pandas2spark(B)
trained_cf = trainable_cf.fit(X=[A, B])
transformed = trained_cf.transform([A, B]).toPandas()
expected = [
[11, 12, 13, 14, 15],
[21, 22, 23, 24, 25],
[31, 32, 33, 34, 35],
]
expected = pd.DataFrame(expected, columns=["a", "b", "c", "d", "e"])
for c in expected.columns:
self.assertEqual(list(transformed[c]), list(expected[c]))
def test_comparison_with_scikit(self):
import warnings
warnings.filterwarnings("ignore")
import sklearn.datasets
import sklearn.utils
from lale.helpers import cross_val_score as lale_cross_val_score
pca = PCA(n_components=3, random_state=42, svd_solver="arpack")
nys = Nystroem(n_components=10, random_state=42)
concat = ConcatFeatures()
lr = LogisticRegression(random_state=42, C=0.1, solver="saga")
trainable = (pca & nys) >> concat >> lr
digits = sklearn.datasets.load_digits()
X, y = sklearn.utils.shuffle(digits.data, digits.target, random_state=42)
cv_results = lale_cross_val_score(trainable, X, y)
cv_results = [f"{score:.1%}" for score in cv_results]
from sklearn.decomposition import PCA as SklearnPCA
from sklearn.kernel_approximation import Nystroem as SklearnNystroem
from sklearn.linear_model import LogisticRegression as SklearnLR
from sklearn.model_selection import cross_val_score as sklearn_cross_val_score
from sklearn.pipeline import FeatureUnion, make_pipeline
union = FeatureUnion(
[
(
"pca",
SklearnPCA(n_components=3, random_state=42, svd_solver="arpack"),
),
("nys", SklearnNystroem(n_components=10, random_state=42)),
]
)
lr = SklearnLR(random_state=42, C=0.1, solver="saga")
pipeline = make_pipeline(union, lr)
scikit_cv_results = sklearn_cross_val_score(pipeline, X, y, cv=5)
scikit_cv_results = [f"{score:.1%}" for score in scikit_cv_results]
self.assertEqual(cv_results, scikit_cv_results)
warnings.resetwarnings()
def test_with_pandas(self):
import warnings
from lale.datasets import load_iris_df
warnings.filterwarnings("ignore")
pca = PCA(n_components=3)
nys = Nystroem(n_components=10)
concat = ConcatFeatures()
lr = LogisticRegression(random_state=42, C=0.1)
trainable = (pca & nys) >> concat >> lr
(X_train, y_train), (X_test, _y_test) = load_iris_df()
trained = trainable.fit(X_train, y_train)
_ = trained.predict(X_test)
def test_concat_with_hyperopt(self):
from lale.lib.lale import Hyperopt
pca = PCA(n_components=3)
nys = Nystroem(n_components=10)
concat = ConcatFeatures()
lr = LogisticRegression(random_state=42, C=0.1)
trainable = (pca & nys) >> concat >> lr
clf = Hyperopt(estimator=trainable, max_evals=2)
from sklearn.datasets import load_iris
iris_data = load_iris()
clf.fit(iris_data.data, iris_data.target)
clf.predict(iris_data.data)
def test_concat_with_hyperopt2(self):
from lale.lib.lale import Hyperopt
from lale.operators import make_pipeline, make_union
pca = PCA(n_components=3)
nys = Nystroem(n_components=10)
lr = LogisticRegression(random_state=42, C=0.1)
trainable = make_pipeline(make_union(pca, nys), lr)
clf = Hyperopt(estimator=trainable, max_evals=2)
from sklearn.datasets import load_iris
iris_data = load_iris()
clf.fit(iris_data.data, iris_data.target)
clf.predict(iris_data.data)
def test_name(self):
trainable_cf = ConcatFeatures()
A = [[11, 12, 13], [21, 22, 23], [31, 32, 33]]
B = [[14, 15], [24, 25], [34, 35]]
A = pd.DataFrame(A, columns=["a", "b", "c"])
B = pd.DataFrame(B, columns=["d", "e"])
A = add_table_name(A, "A")
B = add_table_name(B, "B")
trained_cf = trainable_cf.fit(X=[A, B])
transformed = trained_cf.transform([A, B])
self.assertEqual(get_table_name(transformed), None)
A = add_table_name(A, "AB")
B = add_table_name(B, "AB")
trained_cf = trainable_cf.fit(X=[A, B])
transformed = trained_cf.transform([A, B])
self.assertEqual(get_table_name(transformed), "AB")
class TestTfidfVectorizer(unittest.TestCase):
def test_more_hyperparam_values(self):
with EnableSchemaValidation():
with self.assertRaises(jsonschema.ValidationError):
_ = TfidfVectorizer(
max_df=2.5, min_df=2, max_features=1000, stop_words="english"
)
with self.assertRaises(jsonschema.ValidationError):
_ = TfidfVectorizer(
max_df=2,
min_df=2,
max_features=1000,
stop_words=["I", "we", "not", "this", "that"],
analyzer="char",
)
def test_non_null_tokenizer(self):
# tokenize the doc and lemmatize its tokens
def my_tokenizer():
return "abc"
with EnableSchemaValidation():
with self.assertRaises(jsonschema.ValidationError):
_ = TfidfVectorizer(
max_df=2,
min_df=2,
max_features=1000,
stop_words="english",
tokenizer=my_tokenizer,
analyzer="char",
)