-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathtest_pipeline.py
340 lines (278 loc) · 13.1 KB
/
test_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# Copyright 2019 IBM Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import warnings
from sklearn.datasets import load_iris
from sklearn.metrics import accuracy_score, make_scorer
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier as SkMLPClassifier
from sklearn.pipeline import Pipeline as SkPipeline
from sklearn.preprocessing import MinMaxScaler as SkMinMaxScaler
from lale.lib.lale import Batching, Hyperopt, NoOp
from lale.lib.sklearn import PCA, LogisticRegression, Nystroem
from lale.search.lale_grid_search_cv import get_grid_search_parameter_grids
class TestBatching(unittest.TestCase):
def setUp(self):
data = load_iris()
X, y = data.data, data.target
self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(X, y)
def test_fit(self):
import lale.lib.sklearn as lale_sklearn
warnings.filterwarnings(action="ignore")
pipeline = NoOp() >> Batching(
operator=lale_sklearn.MinMaxScaler()
>> lale_sklearn.MLPClassifier(random_state=42),
batch_size=56,
)
trained = pipeline.fit(self.X_train, self.y_train)
predictions = trained.predict(self.X_test)
lale_accuracy = accuracy_score(self.y_test, predictions)
prep = SkMinMaxScaler()
trained_prep = prep.partial_fit(self.X_train[0:56, :], self.y_train[0:56])
trained_prep.partial_fit(self.X_train[56:, :], self.y_train[56:])
X_transformed = trained_prep.transform(self.X_train)
clf = SkMLPClassifier(random_state=42)
import numpy as np
trained_clf = clf.partial_fit(
X_transformed[0:56, :], self.y_train[0:56], classes=np.unique(self.y_train)
)
trained_clf.partial_fit(
X_transformed[56:, :], self.y_train[56:], classes=np.unique(self.y_train)
)
predictions = trained_clf.predict(trained_prep.transform(self.X_test))
sklearn_accuracy = accuracy_score(self.y_test, predictions)
self.assertEqual(lale_accuracy, sklearn_accuracy)
def test_fit1(self):
warnings.filterwarnings(action="ignore")
from lale.lib.sklearn import MinMaxScaler, MLPClassifier
pipeline = Batching(
operator=MinMaxScaler() >> MLPClassifier(random_state=42), batch_size=56
)
trained = pipeline.fit(self.X_train, self.y_train)
predictions = trained.predict(self.X_test)
lale_accuracy = accuracy_score(self.y_test, predictions)
prep = MinMaxScaler()
trained_prep = prep.partial_fit(self.X_train[0:56, :], self.y_train[0:56])
trained_prep.partial_fit(self.X_train[56:, :], self.y_train[56:])
X_transformed = trained_prep.transform(self.X_train)
clf = SkMLPClassifier(random_state=42)
import numpy as np
trained_clf = clf.partial_fit(
X_transformed[0:56, :], self.y_train[0:56], classes=np.unique(self.y_train)
)
trained_clf.partial_fit(
X_transformed[56:, :], self.y_train[56:], classes=np.unique(self.y_train)
)
predictions = trained_clf.predict(trained_prep.transform(self.X_test))
sklearn_accuracy = accuracy_score(self.y_test, predictions)
self.assertEqual(lale_accuracy, sklearn_accuracy)
def test_fit2(self):
warnings.filterwarnings(action="ignore")
from lale.lib.sklearn import MinMaxScaler
pipeline = Batching(
operator=MinMaxScaler() >> MinMaxScaler(), batch_size=112, shuffle=False
)
trained = pipeline.fit(self.X_train, self.y_train)
lale_transforms = trained.transform(self.X_test)
prep = SkMinMaxScaler()
trained_prep = prep.partial_fit(self.X_train, self.y_train)
X_transformed = trained_prep.transform(self.X_train)
clf = MinMaxScaler()
trained_clf = clf.partial_fit(X_transformed, self.y_train)
sklearn_transforms = trained_clf.transform(trained_prep.transform(self.X_test))
for i in range(5):
for j in range(2):
self.assertAlmostEqual(lale_transforms[i, j], sklearn_transforms[i, j])
def test_fit3(self):
from lale.lib.sklearn import MinMaxScaler, MLPClassifier
pipeline = PCA() >> Batching(
operator=MinMaxScaler() >> MLPClassifier(random_state=42), batch_size=10
)
trained = pipeline.fit(self.X_train, self.y_train)
_ = trained.predict(self.X_test)
def test_no_partial_fit(self):
pipeline = Batching(operator=NoOp() >> LogisticRegression())
_ = pipeline.fit(self.X_train, self.y_train)
def test_fit4(self):
warnings.filterwarnings(action="ignore")
from lale.lib.sklearn import MinMaxScaler, MLPClassifier
pipeline = Batching(
operator=MinMaxScaler() >> MLPClassifier(random_state=42),
batch_size=56,
inmemory=True,
)
trained = pipeline.fit(self.X_train, self.y_train)
predictions = trained.predict(self.X_test)
lale_accuracy = accuracy_score(self.y_test, predictions)
prep = SkMinMaxScaler()
trained_prep = prep.partial_fit(self.X_train[0:56, :], self.y_train[0:56])
trained_prep.partial_fit(self.X_train[56:, :], self.y_train[56:])
X_transformed = trained_prep.transform(self.X_train)
clf = SkMLPClassifier(random_state=42)
import numpy as np
trained_clf = clf.partial_fit(
X_transformed[0:56, :], self.y_train[0:56], classes=np.unique(self.y_train)
)
trained_clf.partial_fit(
X_transformed[56:, :], self.y_train[56:], classes=np.unique(self.y_train)
)
predictions = trained_clf.predict(trained_prep.transform(self.X_test))
sklearn_accuracy = accuracy_score(self.y_test, predictions)
self.assertEqual(lale_accuracy, sklearn_accuracy)
# TODO: Nesting doesn't work yet
# def test_nested_pipeline(self):
# from lale.lib.sklearn import MinMaxScaler, MLPClassifier
# pipeline = Batching(operator = MinMaxScaler() >> Batching(operator = NoOp() >> MLPClassifier(random_state=42)), batch_size = 112)
# trained = pipeline.fit(self.X_train, self.y_train)
# predictions = trained.predict(self.X_test)
# lale_accuracy = accuracy_score(self.y_test, predictions)
class TestPipeline(unittest.TestCase):
def dont_test_with_gridsearchcv2_auto(self):
from sklearn.model_selection import GridSearchCV
lr = LogisticRegression(random_state=42)
pca = PCA(random_state=42, svd_solver="arpack")
trainable = pca >> lr
scikit_pipeline = SkPipeline(
[
(pca.name(), PCA(random_state=42, svd_solver="arpack")),
(lr.name(), LogisticRegression(random_state=42)),
]
)
all_parameters = get_grid_search_parameter_grids(trainable, num_samples=1)
# otherwise the test takes too long
parameters = random.sample(all_parameters, 2)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
clf = GridSearchCV(
scikit_pipeline, parameters, cv=2, scoring=make_scorer(accuracy_score)
)
iris = load_iris()
clf.fit(iris.data, iris.target)
predicted = clf.predict(iris.data)
accuracy_with_lale_operators = accuracy_score(iris.target, predicted)
from sklearn.decomposition import PCA as SklearnPCA
from sklearn.linear_model import LogisticRegression as SklearnLR
scikit_pipeline = SkPipeline(
[
(pca.name(), SklearnPCA(random_state=42, svd_solver="arpack")),
(lr.name(), SklearnLR(random_state=42)),
]
)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
clf = GridSearchCV(
scikit_pipeline, parameters, cv=2, scoring=make_scorer(accuracy_score)
)
iris = load_iris()
clf.fit(iris.data, iris.target)
predicted = clf.predict(iris.data)
accuracy_with_scikit_operators = accuracy_score(iris.target, predicted)
self.assertEqual(accuracy_with_lale_operators, accuracy_with_scikit_operators)
def test_with_gridsearchcv3(self):
from sklearn.model_selection import GridSearchCV
_ = LogisticRegression()
scikit_pipeline = SkPipeline(
[("nystroem", Nystroem()), ("lr", LogisticRegression())]
)
parameters = {"lr__solver": ("liblinear", "lbfgs"), "lr__penalty": ["l2"]}
clf = GridSearchCV(
scikit_pipeline, parameters, cv=2, scoring=make_scorer(accuracy_score)
)
iris = load_iris()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
clf.fit(iris.data, iris.target)
_ = clf.predict(iris.data)
def test_with_gridsearchcv3_auto(self):
from sklearn.model_selection import GridSearchCV
lr = LogisticRegression()
scikit_pipeline = SkPipeline(
[(Nystroem().name(), Nystroem()), (lr.name(), LogisticRegression())]
)
all_parameters = get_grid_search_parameter_grids(
Nystroem() >> lr, num_samples=1
)
# otherwise the test takes too long
parameters = random.sample(all_parameters, 2)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
clf = GridSearchCV(
scikit_pipeline, parameters, cv=2, scoring=make_scorer(accuracy_score)
)
iris = load_iris()
clf.fit(iris.data, iris.target)
_ = clf.predict(iris.data)
def test_with_gridsearchcv3_auto_wrapped(self):
pipeline = Nystroem() >> LogisticRegression()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
from lale.lib.lale import GridSearchCV
clf = GridSearchCV(
estimator=pipeline,
lale_num_samples=1,
lale_num_grids=1,
cv=2,
scoring=make_scorer(accuracy_score),
)
iris = load_iris()
clf.fit(iris.data, iris.target)
_ = clf.predict(iris.data)
class TestBatching2(unittest.TestCase):
def setUp(self):
data = load_iris()
X, y = data.data, data.target
self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(X, y)
def test_batching_with_hyperopt(self):
from lale.lib.sklearn import MinMaxScaler, SGDClassifier
pipeline = Batching(operator=MinMaxScaler() >> SGDClassifier())
trained = pipeline.auto_configure(
self.X_train, self.y_train, optimizer=Hyperopt, max_evals=1
)
_ = trained.predict(self.X_test)
class TestExportToSklearnForEstimator(unittest.TestCase):
def setUp(self):
data = load_iris()
X, y = data.data, data.target
self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(X, y)
def create_pipeline(self):
from sklearn.decomposition import PCA as SkPCA
from sklearn.pipeline import make_pipeline
pipeline = make_pipeline(SkPCA(), LogisticRegression())
return pipeline
def test_import_export_trained(self):
import numpy as np
from lale.helpers import import_from_sklearn_pipeline
pipeline = self.create_pipeline()
self.assertEqual(isinstance(pipeline, SkPipeline), True)
pipeline.fit(self.X_train, self.y_train)
predictions_before = pipeline.predict(self.X_test)
lale_pipeline = import_from_sklearn_pipeline(pipeline)
predictions_after = lale_pipeline.predict(self.X_test)
sklearn_pipeline = lale_pipeline.export_to_sklearn_pipeline()
predictions_after_1 = sklearn_pipeline.predict(self.X_test)
self.assertEqual(np.all(predictions_before == predictions_after), True)
self.assertEqual(np.all(predictions_before == predictions_after_1), True)
def test_import_export_trainable(self):
from sklearn.exceptions import NotFittedError
from lale.helpers import import_from_sklearn_pipeline
pipeline = self.create_pipeline()
self.assertEqual(isinstance(pipeline, SkPipeline), True)
pipeline.fit(self.X_train, self.y_train)
lale_pipeline = import_from_sklearn_pipeline(pipeline, fitted=False)
with self.assertRaises(ValueError):
lale_pipeline.predict(self.X_test)
sklearn_pipeline = lale_pipeline.export_to_sklearn_pipeline()
with self.assertRaises(NotFittedError):
sklearn_pipeline.predict(self.X_test)