-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreferences.bib
246 lines (208 loc) Β· 7.7 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
@Manual{mcomp_pkg,
title = {Mcomp: Data from the M-Competitions},
author = {Rob Hyndman},
year = {2018},
note = {R package version 2.8},
url = {https://CRAN.R-project.org/package=Mcomp},
}
@Article{pkg_forecast,
title = {Automatic time series forecasting: the forecast package for {R}},
author = {Rob J Hyndman and Yeasmin Khandakar},
journal = {Journal of Statistical Software},
volume = {26},
number = {3},
pages = {1--22},
year = {2008},
doi = {10.18637/jss.v027.i03},
}
@article{athanasopoulos2017forecasting,
title = {Forecasting with temporal hierarchies},
journal = {European Journal of Operational Research},
volume = {262},
number = {1},
pages = {60-74},
year = {2017},
issn = {0377-2217},
author = {George Athanasopoulos and Rob J. Hyndman and Nikolaos Kourentzes and Fotios Petropoulos}
}
@Manual{hts_pkg,
title = {hts: Hierarchical and Grouped Time Series},
author = {Rob Hyndman and Alan Lee and Earo Wang and Shanika Wickramasuriya},
year = {2021},
note = {R package version 6.0.2},
url = {https://CRAN.R-project.org/package=hts},
}
@Manual{expsmooth_pkg,
title = {expsmooth: Data Sets from "Forecasting with Exponential Smoothing"},
author = {Rob J Hyndman},
year = {2015},
note = {R package version 2.3},
url = {https://CRAN.R-project.org/package=expsmooth},
}
@article{wickramasuriya2019optimal,
author = {Shanika L. Wickramasuriya and George Athanasopoulos and Rob J. Hyndman},
title = {Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization},
journal = {Journal of the American Statistical Association},
volume = {114},
number = {526},
pages = {804-819},
year = {2019},
publisher = {Taylor & Francis},
}
@article{schafer2005shrinkage,
title={A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics},
author={Sch{\"a}fer, Juliane and Strimmer, Korbinian},
journal={Statistical applications in genetics and molecular biology},
volume={4},
number={1},
year={2005},
publisher={De Gruyter}
}
@article{hyndman2011optimal,
title={Optimal combination forecasts for hierarchical time series},
author={Hyndman, Rob J and Ahmed, Roman A and Athanasopoulos, George and Shang, Han Lin},
journal={Computational statistics \& data analysis},
volume={55},
number={9},
pages={2579--2589},
year={2011},
publisher={Elsevier}
}
@article{makridakis2000m3,
title={The M3-Competition: results, conclusions and implications},
author={Makridakis, Spyros and Hibon, Michele},
journal={International journal of forecasting},
volume={16},
number={4},
pages={451--476},
year={2000},
publisher={Elsevier}
}
@article{panagiotelis2023probabilistic,
title = {Probabilistic forecast reconciliation: Properties, evaluation and score optimisation},
journal = {European Journal of Operational Research},
volume = {306},
number = {2},
pages = {693-706},
year = {2023},
issn = {0377-2217},
author = {Anastasios Panagiotelis and Puwasala Gamakumara and George Athanasopoulos and Rob J. Hyndman},
}
@InProceedings{rangapuram2021end,
title = {End-to-End Learning of Coherent Probabilistic Forecasts for Hierarchical Time Series},
author = {Rangapuram, Syama Sundar and Werner, Lucien D and Benidis, Konstantinos and Mercado, Pedro and Gasthaus, Jan and Januschowski, Tim},
booktitle = {Proceedings of the 38th International Conference on Machine Learning},
pages = {8832--8843},
year = {2021},
editor = {Meila, Marina and Zhang, Tong},
volume = {139},
series = {Proceedings of Machine Learning Research},
month = {18--24 Jul},
publisher = {PMLR}
}
@InProceedings{corani2021probabilistic,
author="Corani, Giorgio
and Azzimonti, Dario
and Augusto, Jo{\~a}o P. S. C.
and Zaffalon, Marco",
editor="Hutter, Frank
and Kersting, Kristian
and Lijffijt, Jefrey
and Valera, Isabel",
title="Probabilistic Reconciliation of Hierarchical Forecast via Bayes' Rule",
booktitle="Machine Learning and Knowledge Discovery in Databases",
year="2021",
publisher="Springer International Publishing",
pages="211--226",
doi="10.1007/978-3-030-67664-3_13"
}
@article{zambon2022efficient,
title={Efficient probabilistic reconciliation of forecasts for real-valued and count time series},
author={Zambon, Lorenzo and Azzimonti, Dario and Corani, Giorgio},
journal={Statistics and Computing},
volume={34},
number={1},
pages={21},
year={2024},
publisher={Springer},
doi={10.1007/s11222-023-10343-y}
}
@article{zambon2024properties,
title = {Properties of the reconciled distributions for Gaussian and count forecasts},
journal = {International Journal of Forecasting},
volume = {40},
number = {4},
pages = {1438-1448},
year = {2024},
issn = {0169-2070},
doi = {https://doi.org/10.1016/j.ijforecast.2023.12.004},
url = {https://www.sciencedirect.com/science/article/pii/S016920702300136X},
author = {Lorenzo Zambon and Arianna Agosto and Paolo Giudici and Giorgio Corani},
keywords = {Reconciliation, Hierarchical forecasting, Importance sampling, Intermittent time series, Probabilistic forecasts}
}
@article{corani2023probabilistic,
title={Probabilistic reconciliation of count time series},
author={Corani, Giorgio and Azzimonti, Dario and Rubattu, Nicol{\`o}},
journal={International Journal of Forecasting},
volume = {40},
number = {2},
pages = {457-469},
year = {2024},
issn = {0169-2070},
doi = {https://doi.org/10.1016/j.ijforecast.2023.04.003},
publisher={Elsevier}
}
@book{hyndman2008forecasting,
title={Forecasting with exponential smoothing: the state space approach},
author={Hyndman, Rob and Koehler, Anne B and Ord, J Keith and Snyder, Ralph D},
year={2008},
publisher={Springer Science \& Business Media}
}
@article{agosto2022multivariate,
title={Multivariate Score-Driven Models for Count Time Series To Assess Financial Contagion},
author={Agosto, Arianna},
doi = {10.2139/ssrn.4119895},
year={2022}
}
@InProceedings{zambon2024mixed,
title = {Probabilistic reconciliation of mixed-type hierarchical time series},
author = {Zambon, Lorenzo and Azzimonti, Dario and Rubattu, Nicol\`o and Corani, Giorgio},
booktitle = {Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence},
pages = {4078--4095},
year = {2024},
editor = {Kiyavash, Negar and Mooij, Joris M.},
volume = {244},
series = {Proceedings of Machine Learning Research},
month = {15--19 Jul},
publisher = {PMLR},
pdf = {https://raw.githubusercontent.com/mlresearch/v244/main/assets/zambon24a/zambon24a.pdf},
url = {https://proceedings.mlr.press/v244/zambon24a.html}
}
@article{MAKRIDAKIS20221325,
title = {{The M5 competition: Background, organization, and implementation}},
journal = {International Journal of Forecasting},
volume = {38},
number = {4},
pages = {1325-1336},
year = {2022},
author = {Spyros Makridakis and Evangelos Spiliotis and Vassilios Assimakopoulos},
keywords = {Forecasting competitions, M competitions, Accuracy, Uncertainty, Time series, Retail sales forecasting},
doi = {10.1016/j.ijforecast.2021.07.007}
}
@article{svetunkov2023iets,
title={{iETS: State space model for intermittent demand forecasting}},
author={Svetunkov, Ivan and Boylan, John E},
journal={International Journal of Production Economics},
volume={265},
pages={109013},
year={2023},
publisher={Elsevier},
doi={10.1016/j.ijpe.2023.109013}
}
@Manual{smooth_pkg,
title = {smooth: Forecasting Using State Space Models},
author = {Ivan Svetunkov},
year = {2023},
note = {R package version 4.0.0},
url = {https://cran.r-project.org/package=smooth},
}