-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathsimpleRegressionMO.m
158 lines (147 loc) · 5.96 KB
/
simpleRegressionMO.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
%
% "simpleR: A simple educational Matlab toolbox for statistical regression"
%
% [simpleR 3.1]
% Version: 3.1
% Date : 15-Nov-2018
%
% This demo shows the training and testing of several state-of-the-art
% statistical models for regression. Please read the README file for more
% details.
%
% If you find this toolbox useful, cite it!
%
% @misc{simpler,
% author = {Camps-Valls, G. and G\'omez-Chova, L. and Mu{\~n}oz-Mar\'i, J. and L\'azaro-Gredilla, M. and Verrelst, J.},
% title = {{simpleR}: A simple educational Matlab toolbox for statistical regression},
% month = {11},
% year = {2018},
% note = {V3.1},
% url = {http://www.uv.es/gcamps/},
% }
%
% ------------------------------
% AVAILABLE METHODS
% ------------------------------
%
% LINEAR MODELS
% * Regularized Least squares Linear regression (RLR)
% * Least Absolute Shrinkage and Selection Operator (LASSO).
% * Elastic Net (ELASTICNET).
%
% SPLINES and POLYNOMIALS
% * Adaptive Regression Splines (ARES)
% * Locally Weighted Polynomials (LWP)
%
% NEIGHBORS
% * k-nearest neighbors regression (KNNR)
% * Weighted k-nearest neighbors regression (WKNNR)
%
% TREE MODELS
% * Decision trees (TREE)
% * Bagging trees (BAGTREE)
% * Boosting trees (BOOST)
% * Random forests (RF1)
% * Boosting random trees (RF2)
%
% NEURAL NETWORS
% * Neural networks (NN)
% * Extreme Learning Machines (ELM)
%
% KERNEL METHODS
% * Support Vector Regression (SVR)
% * Kernel Ridge Regression (KRR), aka Least Squares SVM
% * Relevance Vector Machine (RVM)
% * Kernel signal to noise regression (KSNR)
% * Structured KRR (SKRR)
% * Random Kitchen Sinks Regression (RKS)
%
% GAUSSIAN PROCESSES
% * Gaussian Process Regression (GPR)
% * Variational Heteroscedastic Gaussian Process Regression (VHGPR)
% * Warped Gaussian Processes (WGPR)
% * Sparse Spectrum Gaussian Process Regression (SSGPR)
% * Twin Gaussian Processes (TGP)
%
% Copyright (c) 2016 by Gustau Camps-Valls
% http://isp.uv.es/
% http://www.uv.es/gcamps
%
%% Setup
clear;clc;close all;
fontname = 'Bookman';
fontsize = 20;
fontunits = 'points';
set(0,'DefaultAxesFontName',fontname,'DefaultAxesFontSize',fontsize,'DefaultAxesFontUnits',fontunits,...
'DefaultTextFontName',fontname,'DefaultTextFontSize',fontsize,'DefaultTextFontUnits',fontunits,...
'DefaultLineLineWidth',3,'DefaultLineMarkerSize',10,'DefaultLineColor',[0 0 0]);
% Paths
addpath('./AUXF') % Auxiliary functions for visualization, results analysis, plots, etc.
addpath('./DATA') % Put your data here
% addpath('./FIGURES') % All figures are saved here
% addpath('./RESULTS') % All files with results are saved here
% Paths for the methods
addpath('./standard') % Train-Test functions for all methods
addpath('./SVM') % libsvm code and kernel matrix
addpath('./MRVM') % Relevance vector machine (RVM)
addpath('./VHGPR') % Variational Heteroscedastic Gaussian Process regression [Lazaro-Gredilla, 2011]
addpath('./ARES') % ARESLab -- Adaptive Regression Splines toolbox for Matlab/Octave, ver. 1.5.1, by Gints Jekabsons
addpath('./LWP') % Locally-Weighted Polynomials, Version 1.3, by Gints Jekabsons
addpath('./WGP') % Warped GPs
addpath('./SSGP') % Sparse Spectrum Gaussian Process (SSGP) [Lazaro-Gredilla, 2008]
addpath('./TGP') % Twin Gaussian Process (TGP) [Liefeng Bo and Cristian Sminchisescu] http://www.maths.lth.se/matematiklth/personal/sminchis/code/TGP.html
addpath('./XGB') % Extreme Gradient Boosting Trees
addpath(genpath('./CCFS/src')); % Canonical Correlation Forests
%% Load data:
% X: Input data of size n x d
% Y: Output/target/observation of size n x do
% n: number of samples/examples/patterns (in rows)
% d: input data dimensionality/features (in columns)
% do: output data dimensionality (variables, observations).
load SPARC.mat
% load jura.mat
%% Split training-testing data
rate = 0.2; %[0.05 0.1 0.2 0.3 0.4 0.5 0.6]
% Fix seed random generator (important: disable when doing the 100 realizations loop!)
rng('default'); rng(12345);
[n, d] = size(X); % samples x bands
r = randperm(n); % random index
ntrain = round(rate*n); % #training samples
Xtrain = X(r(1:ntrain),:); % training set
Ytrain = Y(r(1:ntrain),:); % observed training variable
Xtest = X(r(ntrain+1:end),:); % test set
Ytest = Y(r(ntrain+1:end),:); % observed test variable
[ntest, do] = size(Ytest);
VARIABLES = {'b1','b2','b3','b4','b5','b6','b7','b8','b9','b10','b11','b12', ...
'b13','b14','b15','b16','b17','b18','b19','b20','b21','b22','b23','b24', ...
'b25','b26','b27','b28','b29','b30','b31','b32','b33','b34','b35','b36', ...
'b37','b38','b39','b40','b41','b42','b43','b44','b45','b46','b47','b48', ...
'b49','b50','b51','b52','b53','b54','b55','b56','b57','b58','b59','b60','b61','b62'};
%% Input data normalization, either between 0-1 or standardization (zero mean, unit variance)
% [Xtrain a b] = scale(Xtrain);
% Xtest = scale(Xtest,a,b);
% [Xtrain a b] = scalestd(Xtrain);
% Xtest = scalestd(Xtest,a,b);
%% Remove the mean of Y for training only
my = mean(Ytrain);
Ytrain = Ytrain - repmat(my, ntrain, 1);
%% SELECT METHODS FOR COMPARISON: MULTIOUTPUT ONLY
% METHODS = {'RLR' 'RF1' 'ELM' 'NN' 'KRR'}
% METHODS = {'NN'} % 'KRR'}
METHODS = {'RLR', 'KRR', 'RF1', 'CCF'}
% METHODS = {'RF1', 'CCF'}
%% TRAIN ALL MODELS
numModels = numel(METHODS);
for m = 1:numModels
fprintf(['Training ' METHODS{m} '... \n'])
t=cputime;
eval(['model = train' METHODS{m} '(Xtrain,Ytrain);']); % Train the model
eval(['Yp = test' METHODS{m} '(model,Xtest);']); % Test the model
Yp = Yp + repmat(my,ntest,1);
RESULTS{m} = assessment(Ytest, Yp, 'regress');
CPUTIMES{m} = cputime-t;
MODELS{m} = model;
YPREDS{m} = Yp;
end
RESULTS{:}