forked from hkchengrex/XMem
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlogger.py
101 lines (81 loc) · 2.87 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
"""
Dumps things to tensorboard and console
"""
import os
import warnings
import torchvision.transforms as transforms
from torch.utils.tensorboard import SummaryWriter
def tensor_to_numpy(image):
image_np = (image.numpy() * 255).astype('uint8')
return image_np
def detach_to_cpu(x):
return x.detach().cpu()
def fix_width_trunc(x):
return ('{:.9s}'.format('{:0.9f}'.format(x)))
class TensorboardLogger:
def __init__(self, short_id, id, git_info):
self.short_id = short_id
if self.short_id == 'NULL':
self.short_id = 'DEBUG'
if id is None:
self.no_log = True
warnings.warn('Logging has been disbaled.')
else:
self.no_log = False
self.inv_im_trans = transforms.Normalize(
mean=[-0.485/0.229, -0.456/0.224, -0.406/0.225],
std=[1/0.229, 1/0.224, 1/0.225])
self.inv_seg_trans = transforms.Normalize(
mean=[-0.5/0.5],
std=[1/0.5])
log_path = os.path.join('.', 'saves', '%s' % id)
self.logger = SummaryWriter(log_path)
self.log_string('git', git_info)
def log_scalar(self, tag, x, step):
if self.no_log:
warnings.warn('Logging has been disabled.')
return
self.logger.add_scalar(tag, x, step)
def log_metrics(self, l1_tag, l2_tag, val, step, f=None):
tag = l1_tag + '/' + l2_tag
text = '{:s} - It {:6d} [{:5s}] [{:13}]: {:s}'.format(self.short_id, step, l1_tag.upper(), l2_tag, fix_width_trunc(val))
print(text)
if f is not None:
f.write(text + '\n')
f.flush()
self.log_scalar(tag, val, step)
def log_im(self, tag, x, step):
if self.no_log:
warnings.warn('Logging has been disabled.')
return
x = detach_to_cpu(x)
x = self.inv_im_trans(x)
x = tensor_to_numpy(x)
self.logger.add_image(tag, x, step)
def log_cv2(self, tag, x, step):
if self.no_log:
warnings.warn('Logging has been disabled.')
return
x = x.transpose((2, 0, 1))
self.logger.add_image(tag, x, step)
def log_seg(self, tag, x, step):
if self.no_log:
warnings.warn('Logging has been disabled.')
return
x = detach_to_cpu(x)
x = self.inv_seg_trans(x)
x = tensor_to_numpy(x)
self.logger.add_image(tag, x, step)
def log_gray(self, tag, x, step):
if self.no_log:
warnings.warn('Logging has been disabled.')
return
x = detach_to_cpu(x)
x = tensor_to_numpy(x)
self.logger.add_image(tag, x, step)
def log_string(self, tag, x):
print(tag, x)
if self.no_log:
warnings.warn('Logging has been disabled.')
return
self.logger.add_text(tag, x)