-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcyclegan_natural_comics_simple_generatedeptheval.py
394 lines (303 loc) · 14.3 KB
/
cyclegan_natural_comics_simple_generatedeptheval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
def main():
import torch
from torch.utils.data import DataLoader
from torchvision.utils import save_image
from PIL import Image
import os
unique_name = "approach1"
import models.models
cuda = torch.cuda.is_available()
device = torch.device('cuda' if cuda else 'cpu')
print (device)
torch.hub.set_dir(".cache/torch/hub")
# Initialize generators and discriminators
# Inspired from https://github.com/eriklindernoren/PyTorch-GAN/blob/master/implementations/cyclegan/cyclegan.py
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS")
# Moving to cuda if available
# Inspired from https://github.com/eriklindernoren/PyTorch-GAN/blob/master/implementations/cyclegan/cyclegan.py
midas = midas.to(device)
from torch.utils.data import Dataset, DataLoader
import glob
import cv2
from PIL import Image
import torchvision.transforms as transforms
import numpy as np
import random
class ImageDataset_comics(Dataset):
def __init__(self):
comics_file = "validation.txt"
list_comics = []
with open(os.path.join("data/dcm_cropped", comics_file)) as file:
content = file.read().split("\n")
list_comics += [os.path.join("data/dcm_cropped/images", x+'.jpg') for x in content if x != ""]
self.list_comics = list_comics
self.t0 = Resize(
384,
384,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method="upper_bound",
image_interpolation_method=cv2.INTER_CUBIC,
)
#self.t1 = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
self.t2 = PrepareForNet()
self.tensorify = transforms.ToTensor()
def __getitem__(self, index):
comics_name = self.list_comics[index % len(self.list_comics)]
image_comics = cv2.imread(comics_name)
if image_comics.ndim == 2:
image_comics = cv2.cvtColor(image_comics, cv2.COLOR_GRAY2BGR)
image_comics = cv2.cvtColor(image_comics, cv2.COLOR_BGR2RGB) / 255.0
#print("before resize :", natural_name, image_natural.shape[1], image_natural.shape[0])
#if self.natural_depth: print("before resize :",depth_name, image_natural_depth.shape[1], image_natural_depth.shape[0])
#print("before resize :",comics_name, image_comics.shape[1], image_comics.shape[0])
#Resize to at least 384*834
x, y = image_comics.shape[1], image_comics.shape[0]
item_comics = self.t0({"image": image_comics})["image"]
#NormalizeImage
#item_natural = self.t1({"image": item_natural})["image"]
#item_comics = self.t1({"image": item_comics})["image"]
#print("after resize :", natural_name, item_natural.shape[1], item_natural.shape[0])
#if self.natural_depth: print("after resize :",depth_name, item_natural_depth.shape[1], item_natural_depth.shape[0])
#print("after resize :",comics_name, item_comics.shape[1], item_comics.shape[0])
#Random crop to exactly 384*834
#item_comics, _ = get_random_crop(item_comics, None, 384, 384)
#print("after crop :", natural_name, item_natural.shape[1], item_natural.shape[0])
#if self.natural_depth: print("after crop :", depth_name, item_natural_depth.shape[1], item_natural_depth.shape[0])
#print("after crop :", comics_name, item_comics.shape[1], item_comics.shape[0])
#PrepareForNet
item_comics = self.t2({"image": item_comics})["image"]
return {
"comics": item_comics,
"size": (x,y),
"name":comics_name
}
def __len__(self):
return len(self.list_comics)
class Resize(object):
"""Resize sample to given size (width, height).
"""
def __init__(
self,
width,
height,
resize_target=True,
keep_aspect_ratio=False,
ensure_multiple_of=1,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_AREA,
):
"""Init.
Args:
width (int): desired output width
height (int): desired output height
resize_target (bool, optional):
True: Resize the full sample (image, mask, target).
False: Resize image only.
Defaults to True.
keep_aspect_ratio (bool, optional):
True: Keep the aspect ratio of the input sample.
Output sample might not have the given width and height, and
resize behaviour depends on the parameter 'resize_method'.
Defaults to False.
ensure_multiple_of (int, optional):
Output width and height is constrained to be multiple of this parameter.
Defaults to 1.
resize_method (str, optional):
"lower_bound": Output will be at least as large as the given size.
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
Defaults to "lower_bound".
"""
self.__width = width
self.__height = height
self.__resize_target = resize_target
self.__keep_aspect_ratio = keep_aspect_ratio
self.__multiple_of = ensure_multiple_of
self.__resize_method = resize_method
self.__image_interpolation_method = image_interpolation_method
def constrain_to_multiple_of(self, x, min_val=1, max_val=None):
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
if max_val is not None and y > max_val:
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
if y < min_val:
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
return y
def get_size(self, width, height):
# determine new height and width
scale_height = self.__height / height
scale_width = self.__width / width
if self.__keep_aspect_ratio:
if self.__resize_method == "lower_bound":
# scale such that output size is lower bound
if scale_width > scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "upper_bound":
# scale such that output size is upper bound
if scale_width < scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "minimal":
# scale as least as possbile
if abs(1 - scale_width) < abs(1 - scale_height):
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
else:
raise ValueError(
f"resize_method {self.__resize_method} not implemented"
)
if self.__resize_method == "lower_bound":
new_height = self.constrain_to_multiple_of(
scale_height * height, min_val=self.__height
)
new_width = self.constrain_to_multiple_of(
scale_width * width, min_val=self.__width
)
elif self.__resize_method == "upper_bound":
new_height = self.constrain_to_multiple_of(
scale_height * height, max_val=self.__height
)
new_width = self.constrain_to_multiple_of(
scale_width * width, max_val=self.__width
)
elif self.__resize_method == "minimal":
new_height = self.constrain_to_multiple_of(scale_height * height)
new_width = self.constrain_to_multiple_of(scale_width * width)
else:
raise ValueError(f"resize_method {self.__resize_method} not implemented")
return (new_width, new_height)
def __call__(self, sample):
width, height = self.get_size(
sample["image"].shape[1], sample["image"].shape[0]
)
# resize sample
sample["image"] = cv2.resize(
sample["image"],
(width, height),
interpolation=self.__image_interpolation_method,
)
if self.__resize_target:
if "disparity" in sample:
sample["disparity"] = cv2.resize(
sample["disparity"],
(width, height),
interpolation=cv2.INTER_NEAREST,
)
if "depth" in sample:
sample["depth"] = cv2.resize(
sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
)
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
(width, height),
interpolation=cv2.INTER_NEAREST,
)
sample["mask"] = sample["mask"].astype(bool)
return sample
class NormalizeImage(object):
"""Normlize image by given mean and std.
"""
def __init__(self, mean, std):
self.__mean = mean
self.__std = std
def __call__(self, sample):
sample["image"] = (sample["image"] - self.__mean) / self.__std
return sample
class PrepareForNet(object):
"""Prepare sample for usage as network input.
"""
def __init__(self):
pass
def __call__(self, sample):
image = np.transpose(sample["image"], (2, 0, 1))
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
if "mask" in sample:
sample["mask"] = sample["mask"].astype(np.float32)
sample["mask"] = np.ascontiguousarray(sample["mask"])
if "disparity" in sample:
disparity = sample["disparity"].astype(np.float32)
sample["disparity"] = np.ascontiguousarray(disparity)
if "depth" in sample:
depth = sample["depth"].astype(np.float32)
sample["depth"] = np.ascontiguousarray(depth)
return sample
#https://stackoverflow.com/questions/42263020/opencv-trying-to-get-random-portion-of-image
def get_random_crop(image, image2, crop_height, crop_width):
max_x = image.shape[1] - crop_width
max_y = image.shape[0] - crop_height
x = 0 if max_x==0 else np.random.randint(0, max_x)
y = 0 if max_y==0 else np.random.randint(0, max_y)
crop = image[y: y + crop_height, x: x + crop_width]
if image2 is not None :
crop2 = image2[y: y + crop_height, x: x + crop_width]
else:
crop2 = None
return crop, crop2
# Initialize generators and discriminators
# Inspired from https://github.com/eriklindernoren/PyTorch-GAN/blob/master/implementations/cyclegan/cyclegan.py
comics2natural = models.models.GeneratorResNet()
# Moving to cuda if available
# Inspired from https://github.com/eriklindernoren/PyTorch-GAN/blob/master/implementations/cyclegan/cyclegan.py
comics2natural = comics2natural.to(device)
#We want to evaluate epoch 100
epoch = 100
epoch -= 1
checkpoint_file = os.path.join("models/trained/cyclegan_natural_comics_simple", str(epoch)+".pth")
assert os.path.exists(checkpoint_file)
checkpoint = torch.load(checkpoint_file, map_location=device)
comics2natural.load_state_dict(checkpoint['comics2natural_state_dict'])
epoch = checkpoint['epoch']
print("LOADED CHECKPOINT EPOCH", epoch+1)
comics2natural.eval()
midas.eval()
batch_size = 1
dataloader = DataLoader(
ImageDataset_comics(),
batch_size=batch_size,
#shuffle=True,
num_workers= 8 if cuda else 0
)
mean=[0.485, 0.456, 0.406]
std=[0.229, 0.224, 0.225]
mean = torch.Tensor(mean).view(3,1,1).to(device)
std = torch.Tensor(std).view(3,1,1).to(device)
for n, batch in enumerate(dataloader):
#print(n)
images = batch["comics"]
images = images.to(device)
with torch.no_grad():
fake_natural = comics2natural(images)
fake_natural -= mean
fake_natural /= std
prediction = midas(fake_natural)
#print(images.data)
#print(prediction.data)
for i in range(batch["comics"].size()[0]):
maxi = torch.max(prediction[i].view(-1))
pred = prediction[i]/maxi
pred = pred.unsqueeze(0).unsqueeze(0)
# Resize to original resolution
pred_resized = torch.nn.functional.interpolate(
pred,
size=(batch["size"][1][i], batch["size"][0][i]),
mode="bilinear",
align_corners=False,
).squeeze()
new_name = batch["name"][i].replace("dcm_cropped/images", "dcm_cropped/"+unique_name+"epoch"+str(epoch))
print (new_name)
os.makedirs(os.path.dirname(new_name), exist_ok=True)
save_image(pred.squeeze(0).cpu(), new_name.replace(".jpg", ".png"))
save_image(pred_resized.squeeze(0).cpu(), new_name.replace(".jpg", "_originalsize.png"))
with open(new_name.replace(".jpg", ".txt"), "w+") as file:
file.write(str(maxi.item()))