Skip to content

Interbotix/act_solo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ACT: Action Chunking with Transformers

Project Websites:

This repo contains the implementation of ACT, together with 2 simulated environments:

  • Transfer Cube
  • Bimanual Insertion.

You can train and evaluate ACT in simulation or on real hardware. For real hardware, you would also need to install ALOHA.

Repo Structure

  • act
    • act
      • detr Model definitions of ACT, modified from DETR
      • policy.py An adaptor for ACT policy
      • sim_env.py Mujoco + DM_Control environments with joint space control
      • ee_sim_env.py Mujoco + DM_Control environments with EE space control
      • scripted_policy.py Scripted policies for sim environments
      • constants.py Constants shared across files
      • utils.py Utils such as data loading and helper functions
    • scripts
      • imitate_episodes.py Train and Evaluate ACT
      • record_sim_episodes.py Record episodes using the simulator
      • visualize_episodes.py Save videos from a .hdf5 dataset

Installation

There are two recommended ways to install ACT: using conda or venv. Using venv is preferred due its ease of use against frameworks like ROS.

Installation Using venv

sudo apt-get install python3-venv
python3 -m venv ~/aloha # creates a venv "aloha" in the home directory, can be created anywhere
source ~/aloha/bin/venv
pip install dm_control==1.0.14
pip install einops
pip install h5py
pip install ipython
pip install matplotlib
pip install mujoco==2.3.7
pip install opencv-python
pip install packaging
pip install pexpect
pip install pyquaternion
pip install pyyaml
pip install rospkg
pip install torch
pip install torchvision
cd /path/to/act/detr && pip install -e .

Installation Using conda

Manual Installation

conda create -n aloha python=3.8.10
conda activate aloha
pip install dm_control==1.0.14
pip install einops
pip install h5py
pip install ipython
pip install matplotlib
pip install mujoco==2.3.7
pip install opencv-python
pip install packaging
pip install pexpect
pip install pyquaternion
pip install pyyaml
pip install rospkg
pip install torch
pip install torchvision
cd /path/to/act/detr && pip install -e .

Installation from File

conda env create --file=conda_env.yaml

Example Usage

To set up a new terminal, run:

source ~/aloha/bin/activate # or conda activate aloha
cd /path/to/act

Simulated experiments

We use sim_transfer_cube_scripted task in the examples below. Another option is sim_insertion_scripted. To generate 50 episodes of scripted data, run:

python3 record_sim_episodes.py \
  --task_name sim_transfer_cube_scripted \
  --dataset_dir <data save dir> \
  --num_episodes 50

To can add the flag --onscreen_render to see real-time rendering. To visualize the episode after it is collected, run

python3 visualize_episodes.py \
  --dataset_dir <data save dir> \
  --episode_idx 0

To train ACT:

# Transfer Cube task
python3 imitate_episodes.py \
  --task_name sim_transfer_cube_scripted \
  --ckpt_dir <ckpt dir> \
  --policy_class ACT \
  --kl_weight 10 \
  --chunk_size 100 \
  --hidden_dim 512 \
  --batch_size 8 \
  --dim_feedforward 3200 \
  --num_epochs 2000 \
  --lr 1e-5 \
  --seed 0

To evaluate the policy, run the same command but add --eval. This loads the best validation checkpoint. The success rate should be around 90% for transfer cube, and around 50% for insertion. To enable temporal ensembling, add flag --temporal_agg. Videos will be saved to <ckpt_dir> for each rollout. You can also add --onscreen_render to see real-time rendering during evaluation.

For real-world data where things can be harder to model, train for at least 5000 epochs or 3-4 times the length after the loss has plateaued. Please refer to tuning tips for more info.

Updates:

You can find all scripted/human demo for simulated environments here.

TL;DR: if your ACT policy is jerky or pauses in the middle of an episode, just train for longer! Success rate and smoothness can improve way after loss plateaus.

About

No description, website, or topics provided.

Resources

License

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages