-
Notifications
You must be signed in to change notification settings - Fork 61
/
predict.py
205 lines (153 loc) · 8.15 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import numpy as np
import random
from glob import glob
import os
import SimpleITK as sitk
from evaluation_metrics import *
from model import Unet_model
class Prediction(object):
def __init__(self, batch_size_test,load_model_path):
self.batch_size_test=batch_size_test
unet=Unet_model(img_shape=(240,240,4),load_model_weights=load_model_path)
self.model=unet.model
print ('U-net CNN compiled!\n')
def predict_volume(self, filepath_image,show):
'''
segment the input volume
INPUT (1) str 'filepath_image': filepath of the volume to predict
(2) bool 'show': True to ,
OUTPUt (1) np array of the predicted volume
(2) np array of the corresping ground truth
'''
#read the volume
flair = glob( filepath_image + '/*_flair.nii.gz')
t2 = glob( filepath_image + '/*_t2.nii.gz')
gt = glob( filepath_image + '/*_seg.nii.gz')
t1s = glob( filepath_image + '/*_t1.nii.gz')
t1c = glob( filepath_image + '/*_t1ce.nii.gz')
t1=[scan for scan in t1s if scan not in t1c]
if (len(flair)+len(t2)+len(gt)+len(t1)+len(t1c))<5:
print("there is a problem here!!! the problem lies in this patient :")
scans_test = [flair[0], t1[0], t1c[0], t2[0], gt[0]]
test_im = [sitk.GetArrayFromImage(sitk.ReadImage(scans_test[i])) for i in range(len(scans_test))]
test_im=np.array(test_im).astype(np.float32)
test_image = test_im[0:4]
gt=test_im[-1]
gt[gt==4]=3
#normalize each slice following the same scheme used for training
test_image=self.norm_slices(test_image)
#transform teh data to channels_last keras format
test_image = test_image.swapaxes(0,1)
test_image=np.transpose(test_image,(0,2,3,1))
if show:
verbose=1
else:
verbose=0
# predict classes of each pixel based on the model
prediction = self.model.predict(test_image,batch_size=self.batch_size_test,verbose=verbose)
prediction = np.argmax(prediction, axis=-1)
prediction=prediction.astype(np.uint8)
#reconstruct the initial target values .i.e. 0,1,2,4 for prediction and ground truth
prediction[prediction==3]=4
gt[gt==3]=4
return np.array(prediction),np.array(gt)
def evaluate_segmented_volume(self, filepath_image,save,show,save_path):
'''
computes the evaluation metrics on the segmented volume
INPUT (1) str 'filepath_image': filepath to test image for segmentation, including file extension
(2) bool 'save': whether to save to disk or not
(3) bool 'show': If true, prints the evaluation metrics
OUTPUT np array of all evaluation metrics
'''
predicted_images,gt= self.predict_volume(filepath_image,show)
if save:
tmp=sitk.GetImageFromArray(predicted_images)
sitk.WriteImage ( tmp,'predictions/{}.nii.gz'.format(save_path) )
#compute the evaluation metrics
Dice_complete=DSC_whole(predicted_images,gt)
Dice_enhancing=DSC_en(predicted_images,gt)
Dice_core=DSC_core(predicted_images,gt)
Sensitivity_whole=sensitivity_whole(predicted_images,gt)
Sensitivity_en=sensitivity_en(predicted_images,gt)
Sensitivity_core=sensitivity_core(predicted_images,gt)
Specificity_whole=specificity_whole(predicted_images,gt)
Specificity_en=specificity_en(predicted_images,gt)
Specificity_core=specificity_core(predicted_images,gt)
Hausdorff_whole=hausdorff_whole(predicted_images,gt)
Hausdorff_en=hausdorff_en(predicted_images,gt)
Hausdorff_core=hausdorff_core(predicted_images,gt)
if show:
print("************************************************************")
print("Dice complete tumor score : {:0.4f}".format(Dice_complete))
print("Dice core tumor score (tt sauf vert): {:0.4f}".format(Dice_core))
print("Dice enhancing tumor score (jaune):{:0.4f} ".format(Dice_enhancing))
print("**********************************************")
print("Sensitivity complete tumor score : {:0.4f}".format(Sensitivity_whole))
print("Sensitivity core tumor score (tt sauf vert): {:0.4f}".format(Sensitivity_core))
print("Sensitivity enhancing tumor score (jaune):{:0.4f} ".format(Sensitivity_en))
print("***********************************************")
print("Specificity complete tumor score : {:0.4f}".format(Specificity_whole))
print("Specificity core tumor score (tt sauf vert): {:0.4f}".format(Specificity_core))
print("Specificity enhancing tumor score (jaune):{:0.4f} ".format(Specificity_en))
print("***********************************************")
print("Hausdorff complete tumor score : {:0.4f}".format(Hausdorff_whole))
print("Hausdorff core tumor score (tt sauf vert): {:0.4f}".format(Hausdorff_core))
print("Hausdorff enhancing tumor score (jaune):{:0.4f} ".format(Hausdorff_en))
print("***************************************************************\n\n")
return np.array((Dice_complete,Dice_core,Dice_enhancing,Sensitivity_whole,Sensitivity_core,Sensitivity_en,Specificity_whole,Specificity_core,Specificity_en,Hausdorff_whole,Hausdorff_core,Hausdorff_en))#))
def predict_multiple_volumes (self, filepath_volumes,save,show):
results,Ids=[],[]
for patient in filepath_volumes:
tmp1=patient.split('/')
print("Volume ID: " ,tmp1[-2]+'/'+tmp1[-1])
tmp=self.evaluate_segmented_volume(patient,save=save,show=show,save_path=os.path.basename(patient))
#save the results of each volume
results.append(tmp)
#save each ID for later use
Ids.append(str(tmp1[-2]+'/'+tmp1[-1]))
res=np.array(results)
print("mean : ",np.mean(res,axis=0))
print("std : ",np.std(res,axis=0))
print("median : ",np.median(res,axis=0))
print("25 quantile : ",np.percentile(res,25,axis=0))
print("75 quantile : ",np.percentile(res,75,axis=0))
print("max : ",np.max(res,axis=0))
print("min : ",np.min(res,axis=0))
np.savetxt('Results.out', res)
np.savetxt('Volumes_ID.out', Ids,fmt='%s')
def norm_slices(self,slice_not):
'''
normalizes each slice, excluding gt
subtracts mean and div by std dev for each slice
clips top and bottom one percent of pixel intensities
'''
normed_slices = np.zeros(( 4,155, 240, 240))
for slice_ix in range(4):
normed_slices[slice_ix] = slice_not[slice_ix]
for mode_ix in range(155):
normed_slices[slice_ix][mode_ix] = self._normalize(slice_not[slice_ix][mode_ix])
return normed_slices
def _normalize(self,slice):
b = np.percentile(slice, 99)
t = np.percentile(slice, 1)
slice = np.clip(slice, t, b)
image_nonzero = slice[np.nonzero(slice)]
if np.std(slice)==0 or np.std(image_nonzero) == 0:
return slice
else:
tmp= (slice - np.mean(image_nonzero)) / np.std(image_nonzero)
tmp[tmp==tmp.min()]=-9
return tmp
if __name__ == "__main__":
#set arguments
model_to_load="models_saved/ResUnet.04_0.646.hdf5"
#paths for the testing data
path_HGG = glob('Brats2017/Brats17TrainingData/HGG/**')
path_LGG = glob('Brats2017/Brats17TrainingData/LGG/**')
test_path=path_HGG+path_LGG
np.random.seed(2022)
np.random.shuffle(test_path)
#compile the model
brain_seg_pred = Prediction(batch_size_test=2 ,load_model_path=model_to_load)
#predicts each volume and save the results in np array
brain_seg_pred.predict_multiple_volumes(test_path[200:290],save=False,show=True)