forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
performance.py
55 lines (50 loc) · 2.27 KB
/
performance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions and classes related to training performance."""
import tensorflow as tf
def configure_optimizer(optimizer,
use_float16=False,
use_graph_rewrite=False,
loss_scale='dynamic'):
"""Configures optimizer object with performance options."""
if use_float16:
# Wraps optimizer with a LossScaleOptimizer. This is done automatically
# in compile() with the "mixed_float16" policy, but since we do not call
# compile(), we must wrap the optimizer manually.
optimizer = (
tf.keras.mixed_precision.experimental.LossScaleOptimizer(
optimizer, loss_scale=loss_scale))
if use_graph_rewrite:
# Note: the model dtype must be 'float32', which will ensure
# tf.ckeras.mixed_precision and
# tf.train.experimental.enable_mixed_precision_graph_rewrite do not double
# up.
optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
optimizer)
return optimizer
def set_mixed_precision_policy(dtype, loss_scale=None):
"""Sets mix precision policy."""
if dtype == tf.float16:
policy = tf.keras.mixed_precision.experimental.Policy(
'mixed_float16', loss_scale=loss_scale)
tf.keras.mixed_precision.experimental.set_policy(policy)
elif dtype == tf.bfloat16:
policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
tf.keras.mixed_precision.experimental.set_policy(policy)
elif dtype == tf.float32:
tf.keras.mixed_precision.experimental.set_policy('float32')
else:
raise ValueError('Unexpected dtype: %s' % dtype)