diff --git a/runsharp/full_gui.py b/runsharp/full_gui.py index 5399c41f..c557955e 100644 --- a/runsharp/full_gui.py +++ b/runsharp/full_gui.py @@ -26,7 +26,6 @@ from sharppy._version import get_versions import sys import glob as glob -import os import numpy as np import warnings import sutils.frozenutils as frozenutils @@ -722,7 +721,7 @@ def skewApp(self, filename=None, ntry=0): :return: """ # JTS - srcid = self.loc['srcid'] + print(f'full_gui.py -> New profile retrieved from the internet.') pathCloudFile = f'{HOME_DIR}/datasources/cloudTopValues.txt' # Retrieve cloud top pressure/fraction values. @@ -748,7 +747,7 @@ def skewApp(self, filename=None, ntry=0): # Create temporary text file that will store the above values. cloudValues = [] - cloudValues.append(f'{srcid} {ctf_low} {ctf_high} {ctp_low} {ctp_high}') + cloudValues.append(f'{ctf_low} {ctf_high} {ctp_low} {ctp_high}') file = open(pathCloudFile, "w") for line in cloudValues: @@ -763,7 +762,7 @@ def skewApp(self, filename=None, ntry=0): # Create temporary text file that will store the above values. cloudValues = [] - cloudValues.append(f'{srcid} {ctf_low} {ctf_high} {ctp_low} {ctp_high}') + cloudValues.append(f'{ctf_low} {ctf_high} {ctp_low} {ctp_high}') file = open(pathCloudFile, "w") for line in cloudValues: @@ -905,7 +904,6 @@ def loadArchive(self, filename): logging.debug('Get the profiles from the decoded file.') profs = dec.getProfiles() stn_id = dec.getStnId() - return profs, stn_id def hasConnection(self): diff --git a/sharppy/sharptab/params.py b/sharppy/sharptab/params.py index 7e39f922..a80acf44 100644 --- a/sharppy/sharptab/params.py +++ b/sharppy/sharptab/params.py @@ -5,21 +5,22 @@ import numpy.ma as ma from sharppy.sharptab import interp, utils, thermo, winds from sharppy.sharptab.constants import * +import os ''' This file contains various functions to perform the calculation of various convection indices. Because of this, parcel lifting routines are also found in this file. - Functions denoted with a (*) in the docstring refer to functions that were added to the SHARPpy package that - were not ported from the Storm Prediction Center. They have been included as they have been used by the - community in an effort to expand SHARPpy to support the many parameters used in atmospheric science. - + Functions denoted with a (*) in the docstring refer to functions that were added to the SHARPpy package that + were not ported from the Storm Prediction Center. They have been included as they have been used by the + community in an effort to expand SHARPpy to support the many parameters used in atmospheric science. + While the logic for these functions are based in the scientific literature, validation of the output from these functions is occasionally difficult to perform. Although we have made an effort - to resolve code issues when they arise, values from these functions may be erronious and may require additional + to resolve code issues when they arise, values from these functions may be erronious and may require additional inspection by the user. We appreciate any contributions by the meteorological community that can help better validate these SHARPpy functions! - + ''' __all__ = ['DefineParcel', 'Parcel', 'inferred_temp_advection'] @@ -31,16 +32,17 @@ __all__ += ['dgz', 'ship', 'stp_cin', 'stp_fixed', 'scp', 'mmp', 'wndg', 'sherb', 'tei', 'cape'] __all__ += ['mburst', 'dcp', 'ehi', 'sweat', 'hgz', 'lhp', 'integrate_parcel'] +HOME_DIR = os.path.join(os.path.expanduser("~"), ".sharppy") # JTS class DefineParcel(object): ''' Create a parcel from a supplied profile object. - + Parameters ---------- prof : profile object Profile object - + Optional Keywords flag : int (default = 1) Parcel Selection @@ -51,7 +53,7 @@ class DefineParcel(object): 4 - Mean Mixed Layer Parcel 5 - User Defined Parcel 6 - Mean Effective Layer Parcel - + Optional Keywords (Depending on Parcel Selected) Parcel (flag) == 1: Observed Surface Parcel None @@ -84,7 +86,7 @@ class DefineParcel(object): ecinh : number (default = -250) The maximum amount of CINH allowed for a parcel to be considered as part of the inflow layer - + ''' def __init__(self, prof, flag, **kwargs): self.flag = flag @@ -109,36 +111,36 @@ def __init__(self, prof, flag, **kwargs): else: self.presval = kwargs.get('pres', prof.gSndg[prof.sfc]) self.__sfc(prof) - - + + def __sfc(self, prof): ''' Create a parcel using surface conditions - + ''' self.desc = 'Surface Parcel' self.pres = prof.pres[prof.sfc] self.tmpc = prof.tmpc[prof.sfc] self.dwpc = prof.dwpc[prof.sfc] - - + + def __fcst(self, prof, **kwargs): ''' Create a parcel using forecast conditions. - + ''' self.desc = 'Forecast Surface Parcel' self.tmpc = max_temp(prof) self.pres = prof.pres[prof.sfc] pbot = self.pres; ptop = self.pres - 100. self.dwpc = thermo.temp_at_mixrat(mean_mixratio(prof, pbot, ptop, exact=True), self.pres) - - + + def __mu(self, prof, **kwargs): ''' Create the most unstable parcel within the lowest XXX hPa, where XXX is supplied. Default XXX is 400 hPa. - + ''' self.desc = 'Most Unstable Parcel in Lowest %.2f hPa' % self.presval pbot = prof.pres[prof.sfc] @@ -146,15 +148,15 @@ def __mu(self, prof, **kwargs): self.pres = most_unstable_level(prof, pbot=pbot, ptop=ptop) self.tmpc = interp.temp(prof, self.pres) self.dwpc = interp.dwpt(prof, self.pres) - - + + def __ml(self, prof, **kwargs): ''' Create a mixed-layer parcel with mixing within the lowest XXX hPa, where XXX is supplied. Default is 100 hPa. If - + ''' self.desc = '%.2f hPa Mixed Layer Parcel' % self.presval pbot = kwargs.get('pbot', prof.pres[prof.sfc]) @@ -164,23 +166,23 @@ def __ml(self, prof, **kwargs): self.tmpc = thermo.theta(1000., mtheta, self.pres) mmr = mean_mixratio(prof, pbot, ptop, exact=True) self.dwpc = thermo.temp_at_mixrat(mmr, self.pres) - - + + def __user(self, prof, **kwargs): ''' Create a user defined parcel. - + ''' self.desc = '%.2f hPa Parcel' % self.presval self.pres = self.presval self.tmpc = kwargs.get('tmpc', interp.temp(prof, self.pres)) self.dwpc = kwargs.get('dwpc', interp.dwpt(prof, self.pres)) - - + + def __effective(self, prof, **kwargs): ''' Create the mean-effective layer parcel. - + ''' ecape = kwargs.get('ecape', 100) ecinh = kwargs.get('ecinh', -250) @@ -206,7 +208,7 @@ def __effective(self, prof, **kwargs): class Parcel(object): ''' Initialize the parcel variables - + Parameters ---------- pbot : number @@ -310,6 +312,14 @@ class Parcel(object): Buoyancy minimum (C) bminpres : number Pressure at the buoyancy minimum (mb) + ctf_low : number + Cloud top fraction: Low level (%) + ctf_high : number + Cloud top fraction: High level (%) + ctp_low : number + Cloud top pressure: Low level (mb) + ctp_high : number + Cloud top pressure - High level (mb) ''' def __init__(self, **kwargs): self.pres = ma.masked # Parcel beginning pressure (mb) @@ -343,7 +353,7 @@ def __init__(self, **kwargs): self.hghtm30c = ma.masked # Height value at -30 C (m AGL) self.wm10c = ma.masked # w velocity at -10 C ? self.wm20c = ma.masked # w velocity at -20 C ? - self.wm30c = ma.masked # Wet bulb at -30 C ? + self.wm30c = ma.masked # Wet bulb at -30 C ? self.li5 = ma.masked # Lifted Index at 500 mb (C) self.li3 = ma.masked # Lifted Index at 300 mb (C) self.brnshear = ma.masked # Bulk Richardson Number Shear @@ -358,11 +368,34 @@ def __init__(self, **kwargs): self.bminpres = ma.masked # Buoyancy minimum pressure (mb) for kw in kwargs: setattr(self, kw, kwargs.get(kw)) + # JTS + self.ctf_low = ma.masked # Cloud top fraction: Low level (%) + self.ctf_high = ma.masked # Cloud top fraction: High level (%) + self.ctp_low = ma.masked # Cloud top pressure: Low level (mb) + self.ctp_high = ma.masked # Cloud top pressure: High level (mb) + + # Find cloud top pressure/fraction from temporary text file. + pathCloudFile = f'{HOME_DIR}/datasources/cloudTopValues.txt' + file = open(pathCloudFile) + line = file.readlines() + + # Remove the list surrounding the values. + line = line[0] + + # Assign local cloud top values to the parcel profile object. + self.ctf_low = str(line.split(' ')[0]) + self.ctf_high = str(line.split(' ')[1]) + self.ctp_low = int(line.split(' ')[2]) + self.ctp_high = int(line.split(' ')[3]) + + print(f'params.py -> Old profile collection object loaded from cache') + + def hgz(prof): ''' Hail Growth Zone Levels - - This function finds the pressure levels for the dendritic + + This function finds the pressure levels for the dendritic growth zone (from -10 C to -30 C). If either temperature cannot be found, it is set to be the surface pressure. @@ -370,12 +403,12 @@ def hgz(prof): ---------- prof : profile object Profile Object - + Returns ------- pbot : number Pressure of the bottom level (mb) - ptop : number + ptop : number Pressure of the top level (mb) ''' @@ -393,8 +426,8 @@ def hgz(prof): def dgz(prof): ''' Dendritic Growth Zone Levels - - This function finds the pressure levels for the dendritic + + This function finds the pressure levels for the dendritic growth zone (from -12 C to -17 C). If either temperature cannot be found, it is set to be the surface pressure. @@ -402,7 +435,7 @@ def dgz(prof): ---------- prof : profile object Profile Object - + Returns ------- pbot : number @@ -514,7 +547,7 @@ def ship(prof, **kwargs): significant hail parameter (unitless) ''' - + mupcl = kwargs.get('mupcl', None) sfc6shr = kwargs.get('sfc6shr', None) frz_lvl = kwargs.get('frz_lvl', None) @@ -546,10 +579,10 @@ def ship(prof, **kwargs): sfc = prof.pres[prof.sfc] p6km = interp.pres(prof, interp.to_msl(prof, 6000.)) sfc_6km_shear = winds.wind_shear(prof, pbot=sfc, ptop=p6km) - + sfc_6km_shear = utils.mag(sfc_6km_shear[0], sfc_6km_shear[1]) shr06 = utils.KTS2MS(sfc_6km_shear) - + if shr06 > 27: shr06 = 27. elif shr06 < 7: @@ -564,16 +597,16 @@ def ship(prof, **kwargs): h5_temp = -5.5 ship = -1. * (mucape * mumr * lr75 * h5_temp * shr06) / 42000000. - + if mucape < 1300: ship = ship*(mucape/1300.) - + if lr75 < 5.8: ship = ship*(lr75/5.8) if frz_lvl < 2400: ship = ship * (frz_lvl/2400.) - + return ship def stp_cin(mlcape, esrh, ebwd, mllcl, mlcinh): @@ -613,7 +646,7 @@ def stp_cin(mlcape, esrh, ebwd, mllcl, mlcinh): ''' cape_term = mlcape / 1500. eshr_term = esrh / 150. - + if ebwd < 12.5: ebwd_term = 0. elif ebwd > 30.: @@ -643,7 +676,7 @@ def stp_cin(mlcape, esrh, ebwd, mllcl, mlcinh): def stp_fixed(sbcape, sblcl, srh01, bwd6): ''' Significant Tornado Parameter (fixed layer) - + Formulated using the methodology in [2]_. Used to detect environments where significant tornadoes are possible within the United States. @@ -665,7 +698,7 @@ def stp_fixed(sbcape, sblcl, srh01, bwd6): stp_fixed : number signifcant tornado parameter (fixed-layer) ''' - + # Calculate SBLCL term if sblcl < 1000.: # less than 1000. meters lcl_term = 1.0 @@ -679,14 +712,14 @@ def stp_fixed(sbcape, sblcl, srh01, bwd6): bwd6 = 30 elif bwd6 < 12.5: bwd6 = 0.0 - + bwd6_term = bwd6 / 20. cape_term = sbcape / 1500. srh_term = srh01 / 150. stp_fixed = cape_term * lcl_term * srh_term * bwd6_term - + return stp_fixed @@ -713,14 +746,14 @@ def scp(mucape, srh, ebwd): ------- scp : number supercell composite parameter - + ''' if ebwd > 20: ebwd = 20. elif ebwd < 10: ebwd = 0. - + muCAPE_term = mucape / 1000. esrh_term = srh / 50. ebwd_term = ebwd / 20. @@ -731,17 +764,17 @@ def scp(mucape, srh, ebwd): def k_index(prof): ''' Calculates the K-Index from a profile object - + Parameters ---------- prof : profile object Profile Object - + Returns ------- k_index : number K-Index - + ''' t8 = interp.temp(prof, 850.) t7 = interp.temp(prof, 700.) @@ -754,17 +787,17 @@ def k_index(prof): def t_totals(prof): ''' Calculates the Total Totals Index from a profile object - + Parameters ---------- prof : profile object Profile Object - + Returns ------- t_totals : number Total Totals Index - + ''' return c_totals(prof) + v_totals(prof) @@ -772,17 +805,17 @@ def t_totals(prof): def c_totals(prof): ''' Calculates the Cross Totals Index from a profile object - + Parameters ---------- prof : profile object Profile Object - + Returns ------- c_totals : number Cross Totals Index - + ''' return interp.dwpt(prof, 850.) - interp.temp(prof, 500.) @@ -790,17 +823,17 @@ def c_totals(prof): def v_totals(prof): ''' Calculates the Vertical Totals Index from a profile object - + Parameters ---------- prof : profile object Profile Object - + Returns ------- v_totals : number Vertical Totals Index - + ''' return interp.temp(prof, 850.) - interp.temp(prof, 500.) @@ -810,7 +843,7 @@ def precip_water(prof, pbot=None, ptop=400, dp=-1, exact=False): Calculates the precipitable water from a profile object within the specified layer. The default layer (lower=-1 & upper=-1) is defined to be surface to 400 hPa. - + Parameters ---------- prof : profile object @@ -824,7 +857,7 @@ def precip_water(prof, pbot=None, ptop=400, dp=-1, exact=False): exact : bool (optional; default = False) Switch to choose between using the exact data (slower) or using interpolated sounding at 'dp' pressure levels (faster) - + Returns ------- pwat : number, @@ -890,7 +923,7 @@ def inferred_temp_adv(prof, dp=-100, lat=35): return ma.masked, ma.masked omega = (2. * np.pi) / (86164.) - + pres_idx = np.where(prof.pres >= 100.)[0] pressures = np.arange(prof.pres[prof.get_sfc()], prof.pres[pres_idx][-1], dp, dtype=type(prof.pres[prof.get_sfc()])) # Units: mb temps = thermo.ctok(interp.temp(prof, pressures)) @@ -918,30 +951,30 @@ def inferred_temp_adv(prof, dp=-100, lat=35): thght = heights[i] # Units: meters bottom_wdir = dirs[i-1] # Meteorological degrees (degrees from north) top_wdir = dirs[i] # same units as top_wdir - + # Calculate the average temperature avg_temp = (ttemp + btemp) * 2. - + # Calculate the mean wind between the two levels (this is assumed to be geostrophic) mean_u, mean_v = winds.mean_wind(prof, pbot=bottom_pres, ptop=top_pres) mean_wdir, mean_wspd = utils.comp2vec(mean_u, mean_v) # Wind speed is in knots here mean_wspd = utils.KTS2MS(mean_wspd) # Convert this geostrophic wind speed to m/s - + # Here we calculate the change in wind direction with height (thanks to Andrew Mackenzie for help with this) # The sign of d_theta will dictate whether or not it is warm or cold advection mod = 180 - bottom_wdir top_wdir = top_wdir + mod - + if top_wdir < 0: top_wdir = top_wdir + 360 elif top_wdir >= 360: top_wdir = top_wdir - 360 d_theta = top_wdir - 180. - + # Here we calculate t_adv (which is -V_g * del(T) or the local change in temperature term) # K/s s * rad/m * deg m^2/s^2 K degrees / m t_adv = multiplier * np.power(mean_wspd,2) * avg_temp * (d_theta / (thght - bhght)) # Units: Kelvin / seconds - + # Append the pressure bounds so the person knows the pressure pressure_bounds[i-1, :] = bottom_pres, top_pres temp_adv[i-1] = t_adv*60.*60. # Converts Kelvin/seconds to Kelvin/hour (or Celsius/hour) @@ -953,7 +986,7 @@ def temp_lvl(prof, temp, wetbulb=False): ''' Calculates the level (hPa) of the first occurrence of the specified temperature. - + Parameters ---------- prof : profile object @@ -966,7 +999,7 @@ def temp_lvl(prof, temp, wetbulb=False): Returns ------- First Level of the temperature (hPa) : number - + ''' if wetbulb is False: profile = prof.tmpc @@ -1003,19 +1036,19 @@ def max_temp(prof, mixlayer=100): ''' Calculates a maximum temperature forecast based on the depth of the mixing layer and low-level temperatures - + Parameters ---------- prof : profile object Profile Object mixlayer : number (optional; default = 100) Top of layer over which to "mix" (hPa) - + Returns ------- mtemp : number Forecast Maximum Temperature - + ''' mixlayer = prof.pres[prof.sfc] - mixlayer temp = thermo.ctok(interp.temp(prof, mixlayer)) + 2 @@ -1026,7 +1059,7 @@ def mean_relh(prof, pbot=None, ptop=None, dp=-1, exact=False): ''' Calculates the mean relative humidity from a profile object within the specified layer. - + Parameters ---------- prof : profile object @@ -1040,11 +1073,11 @@ def mean_relh(prof, pbot=None, ptop=None, dp=-1, exact=False): exact : bool (optional; default = False) Switch to choose between using the exact data (slower) or using interpolated sounding at 'dp' pressure levels (faster) - + Returns ------- Mean Relative Humidity : number - + ''' if not pbot: pbot = prof.pres[prof.sfc] if not ptop: ptop = prof.pres[prof.sfc] - 100. @@ -1071,7 +1104,7 @@ def mean_omega(prof, pbot=None, ptop=None, dp=-1, exact=False): ''' Calculates the mean omega from a profile object within the specified layer. - + Parameters ---------- prof : profile object @@ -1085,13 +1118,13 @@ def mean_omega(prof, pbot=None, ptop=None, dp=-1, exact=False): exact : bool (optional; default = False) Switch to choose between using the exact data (slower) or using interpolated sounding at 'dp' pressure levels (faster) - + Returns ------- Mean Omega : number - + ''' - if hasattr(prof, 'omeg'): + if hasattr(prof, 'omeg'): if prof.omeg.all() is np.ma.masked: return prof.missing else: @@ -1124,7 +1157,7 @@ def mean_mixratio(prof, pbot=None, ptop=None, dp=-1, exact=False): ''' Calculates the mean mixing ratio from a profile object within the specified layer. - + Parameters ---------- prof : profile object @@ -1138,11 +1171,11 @@ def mean_mixratio(prof, pbot=None, ptop=None, dp=-1, exact=False): exact : bool (optional; default = False) Switch to choose between using the exact data (slower) or using interpolated sounding at 'dp' pressure levels (faster) - + Returns ------- Mean Mixing Ratio : number - + ''' if not pbot: pbot = prof.pres[prof.sfc] if not ptop: ptop = prof.pres[prof.sfc] - 100. @@ -1160,7 +1193,7 @@ def mean_mixratio(prof, pbot=None, ptop=None, dp=-1, exact=False): totp = p.sum() / 2. num = float(len(dwpt)) / 2. w = thermo.mixratio(totp/num, totd/num) - + else: dp = -1 p = np.arange(pbot, ptop+dp, dp, dtype=type(pbot)) @@ -1172,7 +1205,7 @@ def mean_thetae(prof, pbot=None, ptop=None, dp=-1, exact=False): ''' Calculates the mean theta-e from a profile object within the specified layer. - + Parameters ---------- prof : profile object @@ -1186,11 +1219,11 @@ def mean_thetae(prof, pbot=None, ptop=None, dp=-1, exact=False): exact : bool (optional; default = False) Switch to choose between using the exact data (slower) or using interpolated sounding at 'dp' pressure levels (faster) - + Returns ------- Mean Theta-E : number - + ''' if not pbot: pbot = prof.pres[prof.sfc] if not ptop: ptop = prof.pres[prof.sfc] - 100. @@ -1225,7 +1258,7 @@ def mean_theta(prof, pbot=None, ptop=None, dp=-1, exact=False): ''' Calculates the mean theta from a profile object within the specified layer. - + Parameters ---------- prof : profile object @@ -1239,11 +1272,11 @@ def mean_theta(prof, pbot=None, ptop=None, dp=-1, exact=False): exact : bool (optional; default = False) Switch to choose between using the exact data (slower) or using interpolated sounding at 'dp' pressure levels (faster) - + Returns ------- Mean Theta : number - + ''' if not pbot: pbot = prof.pres[prof.sfc] if not ptop: ptop = prof.pres[prof.sfc] - 100. @@ -1272,7 +1305,7 @@ def mean_theta(prof, pbot=None, ptop=None, dp=-1, exact=False): def lapse_rate(prof, lower, upper, pres=True): ''' Calculates the lapse rate (C/km) from a profile object - + Parameters ---------- prof : profile object @@ -1284,13 +1317,13 @@ def lapse_rate(prof, lower, upper, pres=True): pres : bool (optional; default = True) Flag to determine if lower/upper are pressure [True] or height [False] - + Returns ------- lapse rate (C/km) : number ''' if pres: - if (prof.pres[-1] > upper): return ma.masked + if (prof.pres[-1] > upper): return ma.masked p1 = lower p2 = upper z1 = interp.hght(prof, lower) @@ -1320,7 +1353,7 @@ def max_lapse_rate(prof, lower=2000, upper=6000, interval=250, depth=2000): Interval to assess the lapse rate at (m) depth : number Depth of the layer to assess the lapse rate over (m) - + Returns ------- max lapse rate (C/km) : float @@ -1334,12 +1367,12 @@ def max_lapse_rate(prof, lower=2000, upper=6000, interval=250, depth=2000): top_pres = interp.pres(prof, top_levels) all_lapse_rates = (interp.vtmp(prof, top_pres) - interp.vtmp(prof, bottom_pres)) * -1000. max_lapse_rate_idx = np.ma.argmax(all_lapse_rates) - return all_lapse_rates[max_lapse_rate_idx]/depth, bottom_pres[max_lapse_rate_idx], top_pres[max_lapse_rate_idx] + return all_lapse_rates[max_lapse_rate_idx]/depth, bottom_pres[max_lapse_rate_idx], top_pres[max_lapse_rate_idx] def most_unstable_level(prof, pbot=None, ptop=None, dp=-1, exact=False): ''' Finds the most unstable level between the lower and upper levels. - + Parameters ---------- prof : profile object @@ -1353,11 +1386,11 @@ def most_unstable_level(prof, pbot=None, ptop=None, dp=-1, exact=False): exact : bool (optional; default = False) Switch to choose between using the exact data (slower) or using interpolated sounding at 'dp' pressure levels (faster) - + Returns ------- Pressure level of most unstable level (hPa) : number - + ''' if not pbot: pbot = prof.pres[prof.sfc] if not ptop: ptop = prof.pres[prof.sfc] - 400 @@ -1397,17 +1430,17 @@ def parcelTraj(prof, parcel, smu=None, smv=None): trajectory of a parcel that is lifted to its LFC, then given a 5 m/s nudge upwards, and then left to accelerate up to the EL. (Based on a description in the AWIPS 2 Online Training.) - + This parcel is assumed to be moving horizontally via the storm motion vector, which if not supplied is taken to be the Bunkers Right Mover storm motion vector. As the parcel accelerates upwards, it is advected by the storm relative winds. The environmental winds are assumed to be steady-state. - + This simulates the path a parcel in a storm updraft would take using pure parcel theory. - - .. important:: + + .. important:: The code for this function was not directly ported from SPC. - + Parameters ---------- prof : profile object @@ -1418,7 +1451,7 @@ def parcelTraj(prof, parcel, smu=None, smv=None): U-component of the storm motion vector (kts) smv: number, optional V-component of the storm motion vector (kts) - + Returns ------- pos_vector : list @@ -1426,26 +1459,26 @@ def parcelTraj(prof, parcel, smu=None, smv=None): theta : number the tilt of the updraft measured by the angle of the updraft with respect to the horizon (degrees) ''' - + t_parcel = parcel.ttrace # temperature p_parcel = parcel.ptrace # mb elhght = parcel.elhght # meter - + y_0 = 0 # meter x_0 = 0 # meter z_0 = parcel.lfchght # meter p_0 = parcel.lfcpres # meter - + g = 9.8 # m/s**2 t_0 = 0 # seconds w_0 = 5 # m/s (the initial parcel nudge) u_0 = 0 # m/s v_0 = 0 # m/s (initial parcel location, which is storm motion relative) - + delta_t = 25 # the trajectory increment pos_vector = [(x_0,y_0,z_0)] speed_vector = [(u_0, v_0, w_0)] - + if smu==None or smv==None: smu = prof.srwind[0] # Expected to be in knots smv = prof.srwind[1] # Is expected to be in knots @@ -1459,25 +1492,25 @@ def parcelTraj(prof, parcel, smu=None, smv=None): while z_0 < elhght: t_1 = delta_t + t_0 # the time step increment - + # Compute the vertical acceleration env_tempv = interp.vtmp(prof, p_0) + 273.15 pcl_tempv = interp.generic_interp_pres(np.log10(p_0), np.log10(p_parcel.copy())[::-1], t_parcel[::-1]) + 273.15 accel = g * ((pcl_tempv - env_tempv) / env_tempv) - + # Compute the vertical displacement z_1 = (.5 * accel * np.power(t_1 - t_0, 2)) + (w_0 * (t_1 - t_0)) + z_0 w_1 = accel * (t_1 - t_0) + w_0 - + # Compute the parcel-relative winds u, v = interp.components(prof, p_0) u_0 = utils.KTS2MS(u - smu) v_0 = utils.KTS2MS(v - smv) - + # Compute the horizontal displacements x_1 = u_0 * (t_1 - t_0) + x_0 y_1 = v_0 * (t_1 - t_0) + y_0 - + pos_vector.append((x_1, y_1, z_1)) speed_vector.append((u_0, v_0, w_1)) @@ -1487,21 +1520,21 @@ def parcelTraj(prof, parcel, smu=None, smv=None): x_0 = x_1 t_0 = t_1 p_0 = interp.pres(prof, interp.to_msl(prof, z_1)) - + # Update parcel vertical velocity w_0 = w_1 - + # Compute the angle tilt of the updraft r = np.sqrt(np.power(pos_vector[-1][0], 2) + np.power(pos_vector[-1][1], 2)) theta = np.degrees(np.arctan2(pos_vector[-1][2],r)) return pos_vector, theta def cape(prof, pbot=None, ptop=None, dp=-1, new_lifter=False, trunc=False, **kwargs): - ''' + ''' Lifts the specified parcel, calculates various levels and parameters from - the profile object. Only B+/B- are calculated based on the specified layer. - - This is a convenience function for effective_inflow_layer and convective_temp, + the profile object. Only B+/B- are calculated based on the specified layer. + + This is a convenience function for effective_inflow_layer and convective_temp, as well as any function that needs to lift a parcel in an iterative process. This function is a stripped back version of the parcelx function, that only handles bplus and bminus. The intention is to reduce the computation time in @@ -1510,11 +1543,11 @@ def cape(prof, pbot=None, ptop=None, dp=-1, new_lifter=False, trunc=False, **kwa This method of creating a stripped down parcelx function for CAPE/CIN calculations was developed by Greg Blumberg and Kelton Halbert and later implemented in SPC's version of SHARP to speed up their program. - + For full parcel objects, use the parcelx function. - + !! All calculations use the virtual temperature correction unless noted. !! - + Parameters ---------- prof : profile object @@ -1539,18 +1572,18 @@ def cape(prof, pbot=None, ptop=None, dp=-1, new_lifter=False, trunc=False, **kwa flag values lplvals : lifting parcel layer object (optional) Contains the necessary parameters to describe a lifting parcel - + Returns ------- pcl : parcel object Parcel Object - + ''' flag = kwargs.get('flag', 5) pcl = Parcel(pbot=pbot, ptop=ptop) pcl.lplvals = kwargs.get('lplvals', DefineParcel(prof, flag)) if prof.pres.compressed().shape[0] < 1: return pcl - + # Variables pres = kwargs.get('pres', pcl.lplvals.pres) tmpc = kwargs.get('tmpc', pcl.lplvals.tmpc) @@ -1561,7 +1594,7 @@ def cape(prof, pbot=None, ptop=None, dp=-1, new_lifter=False, trunc=False, **kwa totp = 0. totn = 0. cinh_old = 0. - + # See if default layer is specified if not pbot: pbot = prof.pres[prof.sfc] @@ -1571,7 +1604,7 @@ def cape(prof, pbot=None, ptop=None, dp=-1, new_lifter=False, trunc=False, **kwa ptop = prof.pres[prof.pres.shape[0]-1] pcl.tlayer = ptop pcl.ptop = ptop - + # Make sure this is a valid layer if pbot > pres: pbot = pres @@ -1584,20 +1617,20 @@ def cape(prof, pbot=None, ptop=None, dp=-1, new_lifter=False, trunc=False, **kwa pe1 = pbot h1 = interp.hght(prof, pe1) tp1 = thermo.virtemp(pres, tmpc, dwpc) - + # Lift parcel and return LCL pres (hPa) and LCL temp (C) pe2, tp2 = thermo.drylift(pres, tmpc, dwpc) if np.ma.is_masked(pe2) or not utils.QC(pe2) or np.isnan(pe2): return pcl blupper = pe2 - + # Calculate lifted parcel theta for use in iterative CINH loop below # RECALL: lifted parcel theta is CONSTANT from LPL to LCL theta_parcel = thermo.theta(pe2, tp2, 1000.) - + # Environmental theta and mixing ratio at LPL blmr = thermo.mixratio(pres, dwpc) - + # ACCUMULATED CINH IN THE MIXING LAYER BELOW THE LCL # This will be done in 'dp' increments and will use the virtual # temperature correction where possible @@ -1612,28 +1645,28 @@ def cape(prof, pbot=None, ptop=None, dp=-1, new_lifter=False, trunc=False, **kwa lyre = G * (tdef[:-1]+tdef[1:]) / 2 * (hh[1:]-hh[:-1]) totn = lyre[lyre < 0].sum() if not totn: totn = 0. - + # TODO: Because this function is used often to search for parcels that meet a certain # CAPE/CIN threshold, we can add a few statments here and there in the code # that checks to see if these thresholds are met and if they are, return a flag. # We don't need to call wetlift() anymore than we need to. This is one location # where we can do this. If the CIN is too large, return here...don't have to worry # about ever entering the loop! - + # Move the bottom layer to the top of the boundary layer if pbot > pe2: pbot = pe2 pcl.blayer = pbot if pbot < prof.pres[-1]: - # Check for the case where the LCL is above the + # Check for the case where the LCL is above the # upper boundary of the data (e.g. a dropsonde) return pcl - + # Find lowest observation in layer lptr = ma.where(pbot > prof.pres)[0].min() uptr = ma.where(ptop < prof.pres)[0].max() - + # START WITH INTERPOLATED BOTTOM LAYER # Begin moist ascent from lifted parcel LCL (pe2, tp2) pe1 = pbot @@ -1645,7 +1678,7 @@ def cape(prof, pbot=None, ptop=None, dp=-1, new_lifter=False, trunc=False, **kwa if new_lifter: env_temp = prof.vtmp[lptr:] try: - keep = ~env_temp.mask * np.ones(env_temp.shape, dtype=bool) + keep = ~env_temp.mask * np.ones(env_temp.shape, dtype=bool) except AttributeError: keep = np.ones(env_temp.shape, dtype=bool) @@ -1682,7 +1715,7 @@ def cape(prof, pbot=None, ptop=None, dp=-1, new_lifter=False, trunc=False, **kwa tdef1 = (thermo.virtemp(pe1, tp1, tp1) - te1) / thermo.ctok(te1) tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / thermo.ctok(te2) lyre = G * (tdef1 + tdef2) / 2. * (h2 - h1) - + # Add layer energy to total positive if lyre > 0 if lyre > 0: totp += lyre # Add layer energy to total negative if lyre < 0, only up to EL @@ -1739,9 +1772,9 @@ def parcelx(prof, pbot=None, ptop=None, dp=-1, **kwargs): the profile object. B+/B- are calculated based on the specified layer. Such parameters include CAPE, CIN, LCL height, LFC height, buoyancy minimum, EL height, MPL height. - + !! All calculations use the virtual temperature correction unless noted. !! - + Parameters ---------- prof : profile object @@ -1766,17 +1799,17 @@ def parcelx(prof, pbot=None, ptop=None, dp=-1, **kwargs): flag values lplvals : lifting parcel layer object (optional) Contains the necessary parameters to describe a lifting parcel - + Returns ------- Parcel Object - + ''' flag = kwargs.get('flag', 5) pcl = Parcel(pbot=pbot, ptop=ptop) pcl.lplvals = kwargs.get('lplvals', DefineParcel(prof, flag)) if prof.pres.compressed().shape[0] < 1: return pcl - + # Variables pres = kwargs.get('pres', pcl.lplvals.pres) tmpc = kwargs.get('tmpc', pcl.lplvals.tmpc) @@ -1792,7 +1825,7 @@ def parcelx(prof, pbot=None, ptop=None, dp=-1, **kwargs): totn = 0. tote = 0. cinh_old = 0. - + # See if default layer is specified if not pbot: pbot = prof.pres[prof.sfc] @@ -1816,7 +1849,7 @@ def parcelx(prof, pbot=None, ptop=None, dp=-1, **kwargs): tp1 = thermo.virtemp(pres, tmpc, dwpc) ttrace = [tp1] ptrace = [pe1] - + # Lift parcel and return LCL pres (hPa) and LCL temp (C) pe2, tp2 = thermo.drylift(pres, tmpc, dwpc) if type(pe2) == type(ma.masked) or np.isnan(pe2): @@ -1829,15 +1862,15 @@ def parcelx(prof, pbot=None, ptop=None, dp=-1, **kwargs): pcl.lclhght = interp.to_agl(prof, h2) ptrace.append(pe2) ttrace.append(thermo.virtemp(pe2, tp2, tp2)) - + # Calculate lifted parcel theta for use in iterative CINH loop below # RECALL: lifted parcel theta is CONSTANT from LPL to LCL theta_parcel = thermo.theta(pe2, tp2, 1000.) - + # Environmental theta and mixing ratio at LPL bltheta = thermo.theta(pres, interp.temp(prof, pres), 1000.) blmr = thermo.mixratio(pres, dwpc) - + # ACCUMULATED CINH IN THE MIXING LAYER BELOW THE LCL # This will be done in 'dp' increments and will use the virtual # temperature correction where possible @@ -1854,12 +1887,12 @@ def parcelx(prof, pbot=None, ptop=None, dp=-1, **kwargs): lyre = G * (tdef[tidx1]+tdef[tidx2]) / 2 * (hh[tidx2]-hh[tidx1]) totn = lyre[lyre < 0].sum() if not totn: totn = 0. - + # Move the bottom layer to the top of the boundary layer if pbot > pe2: pbot = pe2 pcl.blayer = pbot - + # Calculate height of various temperature levels p0c = temp_lvl(prof, 0.) pm10c = temp_lvl(prof, -10.) @@ -1879,14 +1912,14 @@ def parcelx(prof, pbot=None, ptop=None, dp=-1, **kwargs): pcl.hghtm30c = hgtm30c if pbot < prof.pres[-1]: - # Check for the case where the LCL is above the + # Check for the case where the LCL is above the # upper boundary of the data (e.g. a dropsonde) return pcl # Find lowest observation in layer lptr = ma.where(pbot >= prof.pres)[0].min() uptr = ma.where(ptop <= prof.pres)[0].max() - + # START WITH INTERPOLATED BOTTOM LAYER # Begin moist ascent from lifted parcel LCL (pe2, tp2) pe1 = pbot @@ -1922,25 +1955,25 @@ def parcelx(prof, pbot=None, ptop=None, dp=-1, **kwargs): # Add layer energy to total negative if lyre < 0, only up to EL else: if pe2 > 500.: totn += lyre - + # Check for Max LI mli = thermo.virtemp(pe2, tp2, tp2) - te2 if mli > li_max: li_max = mli li_maxpres = pe2 - + # Check for Max Cap Strength mcap = te2 - mli if mcap > cap_strength: cap_strength = mcap cap_strengthpres = pe2 - + tote += lyre pelast = pe1 pe1 = pe2 te1 = te2 tp1 = tp2 - + # Is this the top of the specified layer if i >= uptr and not utils.QC(pcl.bplus): pe3 = pe1 @@ -1966,7 +1999,7 @@ def parcelx(prof, pbot=None, ptop=None, dp=-1, **kwargs): else: if pe2 > 500.: pcl.bminus += lyrf if pcl.bplus == 0: pcl.bminus = 0. - + # Is this the freezing level if te2 < 0. and not utils.QC(pcl.bfzl): pe3 = pelast @@ -1987,7 +2020,7 @@ def parcelx(prof, pbot=None, ptop=None, dp=-1, **kwargs): thermo.ctok(te2) lyrf = G * (tdef3 + tdef2) / 2. * (hgt0c - h3) if lyrf > 0: pcl.bfzl += lyrf - + # Is this the -10C level if te2 < -10. and not utils.QC(pcl.wm10c): pe3 = pelast @@ -2008,7 +2041,7 @@ def parcelx(prof, pbot=None, ptop=None, dp=-1, **kwargs): thermo.ctok(te2) lyrf = G * (tdef3 + tdef2) / 2. * (hgtm10c - h3) if lyrf > 0: pcl.wm10c += lyrf - + # Is this the -20C level if te2 < -20. and not utils.QC(pcl.wm20c): pe3 = pelast @@ -2029,7 +2062,7 @@ def parcelx(prof, pbot=None, ptop=None, dp=-1, **kwargs): thermo.ctok(te2) lyrf = G * (tdef3 + tdef2) / 2. * (hgtm20c - h3) if lyrf > 0: pcl.wm20c += lyrf - + # Is this the -30C level if te2 < -30. and not utils.QC(pcl.wm30c): pe3 = pelast @@ -2050,7 +2083,7 @@ def parcelx(prof, pbot=None, ptop=None, dp=-1, **kwargs): thermo.ctok(te2) lyrf = G * (tdef3 + tdef2) / 2. * (hgtm30c - h3) if lyrf > 0: pcl.wm30c += lyrf - + # Is this the 3km level if pcl.lclhght < 3000.: if interp.to_agl(prof, h1) <=3000. and interp.to_agl(prof, h2) >= 3000. and not utils.QC(pcl.b3km): @@ -2073,7 +2106,7 @@ def parcelx(prof, pbot=None, ptop=None, dp=-1, **kwargs): lyrf = G * (tdef3 + tdef2) / 2. * (h4 - h3) if lyrf > 0: pcl.b3km += lyrf else: pcl.b3km = 0. - + # Is this the 6km level if pcl.lclhght < 6000.: if interp.to_agl(prof, h1) <=6000. and interp.to_agl(prof, h2) >= 6000. and not utils.QC(pcl.b6km): @@ -2096,7 +2129,7 @@ def parcelx(prof, pbot=None, ptop=None, dp=-1, **kwargs): lyrf = G * (tdef3 + tdef2) / 2. * (h4 - h3) if lyrf > 0: pcl.b6km += lyrf else: pcl.b6km = 0. - + h1 = h2 # LFC Possibility @@ -2148,7 +2181,7 @@ def parcelx(prof, pbot=None, ptop=None, dp=-1, **kwargs): pcl.mplpres = ma.masked pcl.limax = -li_max pcl.limaxpres = li_maxpres - + # MPL Possibility if tote < 0. and not utils.QC(pcl.mplpres) and utils.QC(pcl.elpres): pe3 = pelast @@ -2173,26 +2206,26 @@ def parcelx(prof, pbot=None, ptop=None, dp=-1, **kwargs): pe3 = pe2 pcl.mplpres = pe2 pcl.mplhght = interp.to_agl(prof, interp.hght(prof, pe2)) - + # 500 hPa Lifted Index if prof.pres[i] <= 500. and not utils.QC(pcl.li5): a = interp.vtmp(prof, 500.) b = thermo.wetlift(pe1, tp1, 500.) pcl.li5 = a - thermo.virtemp(500, b, b) - + # 300 hPa Lifted Index if prof.pres[i] <= 300. and not utils.QC(pcl.li3): a = interp.vtmp(prof, 300.) b = thermo.wetlift(pe1, tp1, 300.) pcl.li3 = a - thermo.virtemp(300, b, b) - + # pcl.bminus = cinh_old if not utils.QC(pcl.bplus): pcl.bplus = totp - + # Calculate BRN if available bulk_rich(prof, pcl) - + # Save params if np.floor(pcl.bplus) == 0: pcl.bminus = 0. pcl.ptrace = ma.concatenate((ptrace, ptraces)) @@ -2212,18 +2245,18 @@ def parcelx(prof, pbot=None, ptop=None, dp=-1, **kwargs): def bulk_rich(prof, pcl): ''' Calculates the Bulk Richardson Number for a given parcel. - + Parameters ---------- prof : profile object Profile object pcl : parcel object Parcel object - + Returns ------- Bulk Richardson Number : number - + ''' # Make sure parcel is initialized @@ -2241,22 +2274,22 @@ def bulk_rich(prof, pcl): if utils.QC(pbot): pbot = prof.pres[prof.sfc] h1 = interp.hght(prof, pbot) ptop = interp.pres(prof, h1+6000.) - + if not utils.QC(pbot) or not utils.QC(ptop): pcl.brnshear = ma.masked pcl.brn = ma.masked pcl.brnu = ma.masked pcl.brnv = ma.masked return pcl - + # Calculate the lowest 500m mean wind p = interp.pres(prof, interp.hght(prof, pbot)+500.) #print(p, pbot) mnlu, mnlv = winds.mean_wind(prof, pbot, p) - + # Calculate the 6000m mean wind mnuu, mnuv = winds.mean_wind(prof, pbot, ptop) - + # Make sure CAPE and Shear are available if not utils.QC(pcl.bplus) or not utils.QC(mnlu) or not utils.QC(mnuu): pcl.brnshear = ma.masked @@ -2264,7 +2297,7 @@ def bulk_rich(prof, pcl): pcl.brnv = ma.masked pcl.brn = ma.masked return pcl - + # Calculate shear between levels dx = mnuu - mnlu dy = mnuv - mnlv @@ -2322,7 +2355,7 @@ def effective_inflow_layer(prof, ecape=100, ecinh=-250, **kwargs): pbot = prof.pres[i] break - if not utils.QC(pbot): + if not utils.QC(pbot): return ma.masked, ma.masked bptr = i @@ -2463,7 +2496,7 @@ def bunkers_storm_motion(prof, **kwargs): lstv = mnv + vchg else: rstu, rstv, lstu, lstv = winds.non_parcel_bunkers_motion(prof) - + return rstu, rstv, lstu, lstv @@ -2472,7 +2505,7 @@ def convective_temp(prof, **kwargs): Computes the convective temperature, assuming no change in the moisture profile. Parcels are iteratively lifted until only mincinh is left as a cap. The first guess is the observed surface temperature. - + Parameters ---------- prof : profile object @@ -2485,18 +2518,18 @@ def convective_temp(prof, **kwargs): Temperature of parcel to lift (C) dwpc : number (optional) Dew Point of parcel to lift (C) - + Returns ------- Convective Temperature (C) : number - + ''' mincinh = kwargs.get('mincinh', 0.) mmr = mean_mixratio(prof) pres = kwargs.get('pres', prof.pres[prof.sfc]) tmpc = kwargs.get('tmpc', prof.tmpc[prof.sfc]) dwpc = kwargs.get('dwpc', thermo.temp_at_mixrat(mmr, pres)) - + # Do a quick search to fine whether to continue. If you need to heat # up more than 25C, don't compute. pcl = cape(prof, flag=5, pres=pres, tmpc=tmpc+25., dwpc=dwpc, trunc=True) @@ -2517,7 +2550,7 @@ def tei(prof): Theta-E Index (TEI) TEI is the difference between the surface theta-e and the minimum theta-e value in the lowest 400 mb AGL - + Note: This is the definition of TEI on the SPC help page, but these calculations do not match up with the TEI values on the SPC Online Soundings. The TEI values online are more consistent with the max Theta-E @@ -2527,17 +2560,17 @@ def tei(prof): ---------- prof : profile object Profile object - + Returns ------- tei : number Theta-E Index ''' - + sfc_theta = prof.thetae[prof.sfc] sfc_pres = prof.pres[prof.sfc] top_pres = sfc_pres - 400. - + layer_idxs = ma.where(prof.pres >= top_pres)[0] min_thetae = ma.min(prof.thetae[layer_idxs]) max_thetae = ma.max(prof.thetae[layer_idxs]) @@ -2547,13 +2580,13 @@ def tei(prof): return tei def esp(prof, **kwargs): - + ''' Enhanced Stretching Potential (ESP) This composite parameter identifies areas where low-level buoyancy and steep low-level lapse rates are co-located, which may favor low-level vortex stretching and tornado potential. - + REQUIRES: 0-3 km MLCAPE (from MLPCL) Parameters @@ -2567,7 +2600,7 @@ def esp(prof, **kwargs): ------- ESP Index : number ''' - + mlpcl = kwargs.get('mlpcl', None) if not mlpcl: try: @@ -2575,12 +2608,12 @@ def esp(prof, **kwargs): except: mlpcl = parcelx(prof, flag=4) mlcape = mlpcl.b3km - + lr03 = prof.lapserate_3km # C/km if lr03 < 7. or mlpcl.bplus < 250.: return 0 esp = (mlcape / 50.) * ((lr03 - 7.0) / (1.0)) - + return esp def sherb(prof, **kwargs): @@ -2588,7 +2621,7 @@ def sherb(prof, **kwargs): Severe Hazards In Environments with Reduced Buoyancy (SHERB) Parameter (*) A composite parameter designed to assist forecasters in the High-Shear - Low CAPE (HSLC) environment. This allows better discrimination + Low CAPE (HSLC) environment. This allows better discrimination between significant severe and non-severe convection in HSLC enviroments. It can detect significant tornadoes and significant winds. Values above @@ -2653,10 +2686,10 @@ def sherb(prof, **kwargs): mupcl = cape(prof, lplvals=mulplvals) else: mupcl = prof.mupcl - + # Calculate the effective inflow layer ebottom, etop = effective_inflow_layer( prof, mupcl=mupcl ) - + if ebottom is np.masked or etop is np.masked: # If the inflow layer doesn't exist, return missing return prof.missing @@ -2682,7 +2715,7 @@ def mmp(prof, **kwargs): MCS Maintenance Probability (MMP) The probability that a mature MCS will maintain peak intensity for the next hour. - + This equation was developed using proximity soundings and a regression equation Uses MUCAPE, 3-8 km lapse rate, maximum bulk shear, 3-12 km mean wind speed. Derived in [4]_. @@ -2701,14 +2734,14 @@ def mmp(prof, **kwargs): Profile object mupcl : parcel object, optional Most-Unstable Parcel object - + Returns ------- MMP index (%): number - + """ - + mupcl = kwargs.get('mupcl', None) if not mupcl: try: @@ -2750,9 +2783,9 @@ def mmp(prof, **kwargs): a_2 = -1.16 # K**-1 * km a_3 = -6.17*10**-4 # J**-1 * kg a_4 = -0.17 # m**-1 * s - + mmp = 1. / (1. + np.exp(a_0 + (a_1 * max_bulk_shear) + (a_2 * lr38) + (a_3 * mucape) + (a_4 * mean_wind_3t12))) - + return mmp def wndg(prof, **kwargs): @@ -2763,7 +2796,7 @@ def wndg(prof, **kwargs): where large CAPE, steep low-level lapse rates, enhanced flow in the low-mid levels, and minimal convective inhibition are co-located. - + WNDG values > 1 favor an enhanced risk for scattered damaging outflow gusts with multicell thunderstorm clusters, primarily during the afternoon in the summer. @@ -2780,7 +2813,7 @@ def wndg(prof, **kwargs): WNDG Index : number ''' - + mlpcl = kwargs.get('mlpcl', None) if not mlpcl: try: @@ -2796,14 +2829,14 @@ def wndg(prof, **kwargs): mean_wind = winds.mean_wind(prof, pbot=bot, ptop=top) # needs to be in m/s mean_wind = utils.KTS2MS(utils.mag(mean_wind[0], mean_wind[1])) mlcin = mlpcl.bminus # J/kg - + if lr03 < 7: lr03 = 0. - + if mlcin < -50: mlcin = -50. wndg = (mlcape / 2000.) * (lr03 / 9.) * (mean_wind / 15.) * ((50. + mlcin)/40.) - + return wndg @@ -2823,7 +2856,7 @@ def sig_severe(prof, **kwargs): ------- significant severe parameter (m3/s3) : number ''' - + mlpcl = kwargs.get('mlpcl', None) sfc6shr = kwargs.get('sfc6shr', None) if not mlpcl: @@ -2844,18 +2877,18 @@ def sig_severe(prof, **kwargs): sfc_6km_shear = utils.mag(sfc_6km_shear[0], sfc_6km_shear[1]) shr06 = utils.KTS2MS(sfc_6km_shear) - + sigsevere = mlcape * shr06 return sigsevere def dcape(prof): ''' Downdraft CAPE (DCAPE) - + Adapted from John Hart's (SPC) DCAPE code in NSHARP donated by Rich Thompson (SPC) Calculates the downdraft CAPE value using the downdraft parcel source found in the lowest - 400 mb of the sounding. This downdraft parcel is found by identifying the minimum 100 mb layer + 400 mb of the sounding. This downdraft parcel is found by identifying the minimum 100 mb layer averaged Theta-E. Afterwards, this parcel is lowered to the surface moist adiabatically (w/o virtual temperature @@ -2867,7 +2900,7 @@ def dcape(prof): ---------- prof : profile object Profile object - + Returns ------- dcape : number @@ -2877,7 +2910,7 @@ def dcape(prof): ptrace : array downdraft parcel trace pressure (mb) ''' - + sfc_pres = prof.pres[prof.sfc] prof_thetae = prof.thetae prof_wetbulb = prof.wetbulb @@ -2904,7 +2937,7 @@ def dcape(prof): upper = minp uptr = np.where(pres >= upper)[0] uptr = uptr[-1] - + # Define parcel starting point tp1 = thermo.wetbulb(upper, interp.temp(prof, upper), interp.dwpt(prof, upper)) pe1 = upper @@ -2914,7 +2947,7 @@ def dcape(prof): lyre = 0 # To keep track of the parcel trace from the downdraft - ttrace = [tp1] + ttrace = [tp1] ptrace = [upper] # Lower the parcel to the surface moist adiabatically and compute @@ -2980,7 +3013,7 @@ def precip_eff(prof, **kwargs): precip_efficency (inches) : number ''' - + pw = kwargs.get('pwat', None) pbot = kwargs.get('pbot', 1000) ptop = kwargs.get('ptop', 700) @@ -2999,7 +3032,7 @@ def pbl_top(prof): Planetary Boundary Layer Depth Adapted from NSHARP code donated by Rich Thompson (SPC) - Calculates the planetary boundary layer depth by calculating the + Calculates the planetary boundary layer depth by calculating the virtual potential temperature of the surface parcel + .5 K, and then searching for the location above the surface where the virtual potential temperature of the profile is greater than the surface virtual potential temperature. @@ -3088,7 +3121,7 @@ def mburst(prof): The values can be interpreted in the following manner: 3-4 infers a "slight chance" of a microburst; 5-8 infers a "chance" of a microburst; >= 9 infers that microbursts are "likely". These values can also be viewed as conditional upon the existence of a storm. - + This code was updated on 9/11/2018 - TT was being used in the function instead of VT. The original SPC code was checked to confirm this was the problem. This error was not identified during the testing phase for some reason. @@ -3260,7 +3293,7 @@ def sweat(prof): 4. 500 mb wind speed 5. Direction of wind at 500 6. Direction of wind at 850 - + Formulation taken from Notes on Analysis and Severe-Storm Forecasting Procedures of the Air Force Global Weather Central, 1972 by RC Miller. .. warning:: @@ -3343,9 +3376,9 @@ def thetae_diff(prof): def bore_lift(prof, hbot=0., htop=3000., pbot=None, ptop=None): """ - Lift all parcels in the layer. Calculate and return the difference between - the liften parcel level height and the LFC height. - + Lift all parcels in the layer. Calculate and return the difference between + the liften parcel level height and the LFC height. + hbot: bottom of layer in meters (AGL) htop: top of layer in meters(AGL) @@ -3353,9 +3386,9 @@ def bore_lift(prof, hbot=0., htop=3000., pbot=None, ptop=None): pbot: bottom of layer (in hPa) ptop: top of layer (in hPa) - + """ - + pres = prof.pres; hght = prof.hght tmpc = prof.tmpc; dwpc = prof.dwpc mask = ~prof.pres.mask * ~prof.hght.mask * ~prof.tmpc.mask * ~prof.dwpc.mask @@ -3378,6 +3411,6 @@ def bore_lift(prof, hbot=0., htop=3000., pbot=None, ptop=None): lpl = DefineParcel(prof, 5, pres=pres[idx]) pcl = parcelx(prof, pres=pres[idx], tmpc=tmpc[idx], dwpc=dwpc[idx], pbot=pres[idx]) delta_lfc[i] = pcl.lfchght - hght[idx] - i += 1 + i += 1 return np.ma.masked_invalid(delta_lfc) diff --git a/sharppy/viz/SPCWindow.py b/sharppy/viz/SPCWindow.py index b1568c04..1b1f4811 100644 --- a/sharppy/viz/SPCWindow.py +++ b/sharppy/viz/SPCWindow.py @@ -985,7 +985,6 @@ def createMenuName(self, prof_col): return "%s (%s)" % (pc_loc, pc_model) else: # Keep the default cycle time for the non-NUCAPS data. - pass return "%s (%s %s)" % (pc_loc, pc_date, pc_model) def interpProf(self): diff --git a/sharppy/viz/skew.py b/sharppy/viz/skew.py index 80652c66..659810de 100644 --- a/sharppy/viz/skew.py +++ b/sharppy/viz/skew.py @@ -12,7 +12,7 @@ from sutils.utils import total_seconds import logging from datetime import datetime, timedelta -from runsharp.full_gui import * +import os HOME_DIR = os.path.join(os.path.expanduser("~"), ".sharppy") # JTS @@ -1246,36 +1246,25 @@ def draw_cloud_top_pressure_levels(self, qp): # JTS added 9/1/20 x = self.tmpc_to_pix(xbounds, [1000.,1000.]) qp.setFont(self.hght_font) - # Retrieve cloud top pressure/fraction from temporary text file. - pathCloudFile = f'{HOME_DIR}/datasources/cloudTopValues.txt' - file = open(pathCloudFile) - line = file.readlines() + print(f'skew.py -> cloud top values replotting...') - # Remove the list surrounding the values. - line = line[0] - - # Split the string on whitespace. - ctf_low = line.split(' ')[1] - ctf_high = line.split(' ')[2] - ctp_low = line.split(' ')[3] - ctp_high = line.split(' ')[4] - - # Plot CTP_Low - if tab.utils.QC(int(ctp_low)): - y = self.originy + self.pres_to_pix(int(ctp_low)) / self.scale + # Plot CTP_High + if tab.utils.QC(self.pcl.ctp_high): + y = self.originy + self.pres_to_pix(self.pcl.ctp_high) / self.scale pen = QtGui.QPen(QtCore.Qt.yellow, 2, QtCore.Qt.SolidLine) qp.setPen(pen) qp.drawLine(x[0], y, x[1], y) - rect1 = QtCore.QRectF(x[0], y+6, x[1] - x[0], 4) - qp.drawText(rect1, QtCore.Qt.TextDontClip | QtCore.Qt.AlignCenter, "CTF = " + str(ctf_low) + "%") - # Plot CTP_High - if tab.utils.QC(int(ctp_high)): - y = self.originy + self.pres_to_pix(int(ctp_high)) / self.scale + rect2 = QtCore.QRectF(x[0], y-8, x[1] - x[0], 4) + qp.drawText(rect2, QtCore.Qt.TextDontClip | QtCore.Qt.AlignCenter, "CTF = " + self.pcl.ctf_high + "%") + # Plot CTP_Low + if tab.utils.QC(self.pcl.ctp_low): + y = self.originy + self.pres_to_pix(self.pcl.ctp_low) / self.scale pen = QtGui.QPen(QtCore.Qt.yellow, 2, QtCore.Qt.SolidLine) qp.setPen(pen) qp.drawLine(x[0], y, x[1], y) - rect2 = QtCore.QRectF(x[0], y-8, x[1] - x[0], 4) - qp.drawText(rect2, QtCore.Qt.TextDontClip | QtCore.Qt.AlignCenter, "CTF = " + str(ctf_high) + "%") + rect1 = QtCore.QRectF(x[0], y+6, x[1] - x[0], 4) + qp.drawText(rect1, QtCore.Qt.TextDontClip | QtCore.Qt.AlignCenter, "CTF = " + self.pcl.ctf_low + "%") + def omeg_to_pix(self, omeg): plus10_bound = -49