You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
| Deep Session Interest Network |[IJCAI 2019][Deep Session Interest Network for Click-Through Rate Prediction ](https://arxiv.org/abs/1905.06482)|
55
55
| FiBiNET |[RecSys 2019][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.09433.pdf)|
56
56
| FLEN |[arxiv 2019][FLEN: Leveraging Field for Scalable CTR Prediction](https://arxiv.org/pdf/1911.04690.pdf)|
57
+
| BST |[DLP-KDD 2019][Behavior sequence transformer for e-commerce recommendation in Alibaba](https://arxiv.org/pdf/1905.06874.pdf)|
57
58
| DCN V2 |[arxiv 2020][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/abs/2008.13535)|
- **blinding**: bool. Whether or not use blinding.
437
437
- **seed**: A Python integer to use as random seed.
438
438
- **supports_masking**:bool. Whether or not support masking.
439
+
- **attention_type**: str, Type of attention, the value must be one of ["scaled_dot_product","additive"].
440
+
- **output_type**: str or None. Whether or not use average/sum pooling for output.
439
441
440
442
References
441
443
- [Vaswani, Ashish, et al. "Attention is all you need." Advances in Neural Information Processing Systems. 2017.](https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf)
Qiwei Chen, Huan Zhao, Wei Li, Pipei Huang, and Wenwu Ou. 2019. Behavior sequence transformer for e-commerce recommendation in Alibaba. In Proceedings of the 1st International Workshop on Deep Learning Practice for High-Dimensional Sparse Data (DLP-KDD '19). Association for Computing Machinery, New York, NY, USA, Article 12, 1–4. DOI:https://doi.org/10.1145/3326937.3341261
0 commit comments