forked from RunlongYu/RandomWalk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGraph.py
104 lines (95 loc) · 3.25 KB
/
Graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# @author Runlong Yu, Weibo Gao, Han Wu
import random
import numpy as np
class Graph():
def __init__(self, nx_G, p, q):
self.G = nx_G
self.p = p
self.q = q
def random_walk(self, walk_length, start_node):
G = self.G
alias_nodes = self.alias_nodes
alias_edges = self.alias_edges
walk = [start_node]
while len(walk) < walk_length:
cur = walk[-1]
cur_nbrs = sorted(G.neighbors(cur))
if len(cur_nbrs) > 0:
if len(walk) == 1:
walk.append(cur_nbrs[alias_draw(alias_nodes[cur][0], alias_nodes[cur][1])])
else:
pre = walk[-2]
next = cur_nbrs[alias_draw(alias_edges[(pre, cur)][0], alias_edges[(pre, cur)][1])]
walk.append(next)
else:
break
return walk
def simulate_walks(self, num_walks, walk_length):
G = self.G
walks = []
nodes = list(G.nodes())
for walk_iter in range(num_walks):
random.shuffle(nodes)
for node in nodes:
walks.append(self.random_walk(walk_length=walk_length, start_node=node))
return walks
def get_alias_edge(self, src, dst):
G = self.G
p = self.p
q = self.q
probs = []
for dst_nbr in sorted(G.neighbors(dst)):
if dst_nbr == src:
probs.append(G[dst][dst_nbr]['weight'] / p)
elif G.has_edge(dst_nbr, src):
probs.append(G[dst][dst_nbr]['weight'])
else:
probs.append(G[dst][dst_nbr]['weight'] / q)
const = sum(probs)
probs = [float(prob) / const for prob in probs]
return alias_setup(probs)
def process_transition_probs(self):
G = self.G
alias_nodes = {}
for node in G.nodes():
probs = [G[node][nbr]['weight'] for nbr in sorted(G.neighbors(node))]
const = sum(probs)
probs_1 = [float(prob) / const for prob in probs]
alias_nodes[node] = alias_setup(probs_1)
alias_edges = {}
num = 0
for edge in G.edges():
num += 1
alias_edges[edge] = self.get_alias_edge(edge[0], edge[1])
alias_edges[(edge[1], edge[0])] = self.get_alias_edge(edge[1], edge[0])
self.alias_nodes = alias_nodes
self.alias_edges = alias_edges
def alias_setup(probs):
k = len(probs)
q = np.zeros(k)
j = np.zeros(k, dtype=np.int)
smaller = []
larger = []
for kk, prob in enumerate(probs):
q[kk] = k * prob
if q[kk] < 1.0:
smaller.append(kk)
else:
larger.append(kk)
while len(smaller) > 0 and len(larger) > 0:
small = smaller.pop()
large = larger.pop()
j[small] = large
q[large] = q[large] + q[small] - 1.0
if q[large] < 1.0:
smaller.append(large)
else:
larger.append(large)
return j, q
def alias_draw(j, q):
k = len(j)
kk = int(np.floor(np.random.rand() * k))
if np.random.rand() < q[kk]:
return kk
else:
return j[kk]