-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathFactorial_decomposition.py
61 lines (48 loc) · 1.41 KB
/
Factorial_decomposition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Kata link:
# https://www.codewars.com/kata/5a045fee46d843effa000070
# -------------------------------------
# -------------------------------------
# Solution:
def primes(n):
"""
return all primes number of n
"""
p = 2
res = []
while p * p <= n:
while n % p == 0:
res.append(p)
n //= p
p += 1
if n > 1:
res.append(n)
return res
def decomp(n):
fctrs = {}
result = ""
while n > 1:
tp = primes(n)
n -= 1
for i in set(tp):
if i in fctrs:
fctrs[i] += tp.count(i)
else:
fctrs[i] = tp.count(i)
fctrs = sorted(fctrs.items(), key=lambda x: x[1])
fctrs.reverse()
for i in fctrs:
if i[1] == 1:
result += f"{i[0]}"
else:
result += f"{i[0]}^{i[1]}"
if i != fctrs[-1]:
result += " * "
return result
# -------------------------------------
# Test
print(decomp(5) == "2^3 * 3 * 5")
print(decomp(14) == "2^11 * 3^5 * 5^2 * 7^2 * 11 * 13")
print(decomp(17) == "2^15 * 3^6 * 5^3 * 7^2 * 11 * 13 * 17")
print(decomp(22) == "2^19 * 3^9 * 5^4 * 7^3 * 11^2 * 13 * 17 * 19")
print(decomp(25) == "2^22 * 3^10 * 5^6 * 7^3 * 11^2 * 13 * 17 * 19 * 23")
print(decomp(79) == "2^74 * 3^36 * 5^18 * 7^12 * 11^7 * 13^6 * 17^4 * 19^4 * 23^3 * 29^2 * 31^2 * 37^2 * 41 * 43 * 47 * 53 * 59 * 61 * 67 * 71 * 73 * 79")