-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathPrime_number_decompositions.py
118 lines (98 loc) · 3.21 KB
/
Prime_number_decompositions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Kata link:
# https://www.codewars.com/kata/53c93982689f84e321000d62/
# -------------------------------------
# Instructions:
'''
You have to code a function getAllPrimeFactors wich take an integer
as parameter and return an array containing its prime decomposition
by ascending factors, if a factors appears multiple time in the
decomposition it should appear as many time in the array.
exemple: getAllPrimeFactors(100) returns [2,2,5,5] in this order.
This decomposition may not be the most practical.
You should also write getUniquePrimeFactorsWithCount, a function
which will return an array containing two arrays: one with prime
numbers appearing in the decomposition and the other containing
their respective power.
exemple: getUniquePrimeFactorsWithCount(100) returns [[2,5],[2,2]]
You should also write getUniquePrimeFactorsWithProducts an array
containing the prime factors to their respective powers.
exemple: getUniquePrimeFactorsWithProducts(100) returns [4,25]
Errors, if:
n is not a number
n not an integer
n is negative or 0
The three functions should respectively return [], [[],[]] and [].
Edge cases:
if n=0, the function should respectively return [], [[],[]] and [].
if n=1, the function should respectively return [1], [[1],[1]], [1].
if n=2, the function should respectively return [2], [[2],[1]], [2].
The result for n=2 is normal. The result for n=1 is arbitrary and has
been chosen to return a usefull result. The result for n=0 is also
arbitrary but can not be chosen to be both usefull and intuitive.
([[0],[0]] would be meaningfull but wont work for general use of
decomposition, [[0],[1]] would work but is not intuitive.)
'''
# -------------------------------------
# Solution:
def getAllPrimeFactors(n):
""" A simple trial division
"""
if type(n) != int or n <= 1:
if n == 1:
return [1]
else:
return []
else:
factors = []
prime = 2
while prime*prime <= n:
while (n % prime) == 0:
factors.append(prime)
n //= prime
prime += 1
if n > 1:
factors.append(n)
return factors
def getUniquePrimeFactorsWithCount(n):
if type(n) != int or n <= 1:
if n == 1:
return [[1],[1]]
else:
return [[],[]]
else:
factors = getAllPrimeFactors(n)
primeNumbers = [[],[]]
for i in set(factors):
primeNumbers[0].append(i)
primeNumbers[1].append(factors.count(i))
return primeNumbers
def getUniquePrimeFactorsWithProducts(n):
if type(n) != int or n <= 1:
if n == 1:
return [1]
else:
return []
else:
primeNumbers = getUniquePrimeFactorsWithCount(n)
result = []
for i in zip(primeNumbers[0], primeNumbers[1]):
result.append(i[0] ** i[1])
return result
# -------------------------------------
# Basic Tests
print('Test 1')
print(getAllPrimeFactors(100), [2,2,5,5])
print(getUniquePrimeFactorsWithCount(100), [[2,5],[2,2]])
print(getUniquePrimeFactorsWithProducts(100), [4,25])
print('Test 2')
print(getAllPrimeFactors(0))
print(getUniquePrimeFactorsWithCount(0))
print(getUniquePrimeFactorsWithProducts(0))
print('Test 3')
print(getAllPrimeFactors(1))
print(getUniquePrimeFactorsWithCount(1))
print(getUniquePrimeFactorsWithProducts(1))
print('Test 4')
print(getAllPrimeFactors(2))
print(getUniquePrimeFactorsWithCount(2))
print(getUniquePrimeFactorsWithProducts(2))