forked from wengong-jin/hgraph2graph
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmol_graph.py
254 lines (211 loc) · 10.4 KB
/
mol_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import torch
import rdkit
import rdkit.Chem as Chem
import networkx as nx
from poly_hgraph.chemutils import *
from poly_hgraph.nnutils import *
add = lambda x,y : x + y if type(x) is int else (x[0] + y, x[1] + y)
add_none = lambda x,y : None if x is None else x + y
class MolGraph(object):
BOND_LIST = [Chem.rdchem.BondType.SINGLE, Chem.rdchem.BondType.DOUBLE, Chem.rdchem.BondType.TRIPLE, Chem.rdchem.BondType.AROMATIC]
MAX_POS = 20
FRAGMENTS = None
@staticmethod
def load_fragments(fragments):
fragments = [Chem.MolToSmiles(Chem.MolFromSmiles(x)) for x in fragments]
MolGraph.FRAGMENTS = set(fragments)
def __init__(self, smiles):
self.smiles = smiles
self.mol = get_mol(smiles)
self.mol_graph = self.build_mol_graph()
self.clusters = self.find_clusters()
self.clusters, self.atom_cls = self.pool_clusters()
self.mol_tree = self.tree_decomp()
self.order = self.label_tree()
def find_clusters(self):
mol = self.mol
n_atoms = mol.GetNumAtoms()
if n_atoms == 1: #special case
return [(0,)], [[0]]
clusters = []
for bond in mol.GetBonds():
a1 = bond.GetBeginAtom().GetIdx()
a2 = bond.GetEndAtom().GetIdx()
if not bond.IsInRing():
clusters.append( (a1,a2) )
ssr = [tuple(x) for x in Chem.GetSymmSSSR(mol)]
clusters.extend(ssr)
return clusters
def tree_decomp(self):
clusters = self.clusters
graph = nx.empty_graph( len(clusters) )
for atom, nei_cls in enumerate(self.atom_cls):
if len(nei_cls) <= 1: continue
inter = set(self.clusters[nei_cls[0]])
for cid in nei_cls:
inter = inter & set(self.clusters[cid])
assert len(inter) >= 1
if len(nei_cls) > 2 and len(inter) == 1: # two rings + one bond has problem!
clusters.append([atom])
c2 = len(clusters) - 1
graph.add_node(c2)
for c1 in nei_cls:
graph.add_edge(c1, c2, weight = 100)
else:
for i,c1 in enumerate(nei_cls):
for c2 in nei_cls[i + 1:]:
union = set(clusters[c1]) | set(clusters[c2])
graph.add_edge(c1, c2, weight = len(union))
n, m = len(graph.nodes), len(graph.edges)
assert n - m <= 1 #must be connected
return graph if n - m == 1 else nx.maximum_spanning_tree(graph)
def pool_clusters(self):
hoptions = []
visited = set()
fragments = find_fragments(self.mol)
for fsmiles, fatoms in fragments:
if fsmiles not in MolGraph.FRAGMENTS: continue
fclusters = [i for i,cls in enumerate(self.clusters) if set(cls) <= fatoms]
assert len(set(fclusters) & visited) == 0
hoptions.append(list(fatoms))
visited.update(fclusters)
for i,cls in enumerate(self.clusters):
if i not in visited:
hoptions.append(cls)
hoptions = sorted(hoptions, key = lambda x: min(x)) #to ensure hoptions[0] has the root node
atom_cls = [[] for _ in self.mol.GetAtoms()]
for i in range(len(hoptions)):
for atom in hoptions[i]:
atom_cls[atom].append(i)
return hoptions, atom_cls
def label_tree(self):
def dfs(order, pa, prev_sib, x, fa):
pa[x] = fa
sorted_child = sorted([ y for y in self.mol_tree[x] if y != fa ]) #better performance with fixed order
for idx,y in enumerate(sorted_child):
self.mol_tree[x][y]['label'] = 0
self.mol_tree[y][x]['label'] = idx + 1 #position encoding
prev_sib[y] = sorted_child[:idx]
prev_sib[y] += [x, fa] if fa >= 0 else [x]
order.append( (x,y,1) )
dfs(order, pa, prev_sib, y, x)
order.append( (y,x,0) )
order, pa = [], {}
self.mol_tree = nx.DiGraph(self.mol_tree)
prev_sib = [[] for i in range(len(self.clusters))]
dfs(order, pa, prev_sib, 0, -1)
order.append( (0, None, 0) ) #last backtrack at root
mol = get_mol(self.smiles)
for a in mol.GetAtoms():
a.SetAtomMapNum( a.GetIdx() + 1 )
tree = self.mol_tree
for i,cls in enumerate(self.clusters):
inter_atoms = set(cls) & set(self.clusters[pa[i]]) if pa[i] >= 0 else set([0])
cmol, inter_label = get_inter_label(mol, cls, inter_atoms, self.atom_cls)
tree.nodes[i]['ismiles'] = ismiles = get_smiles(cmol)
tree.nodes[i]['inter_label'] = inter_label
tree.nodes[i]['smiles'] = smiles = get_smiles(set_atommap(cmol))
tree.nodes[i]['label'] = (smiles, ismiles) if len(cls) > 1 else (smiles, smiles)
tree.nodes[i]['cluster'] = cls
tree.nodes[i]['assm_cands'] = []
if pa[i] >= 0 and len(self.clusters[ pa[i] ]) > 2: #uncertainty occurs in assembly
hist = [a for c in prev_sib[i] for a in self.clusters[c]]
pa_cls = self.clusters[ pa[i] ]
tree.nodes[i]['assm_cands'] = get_assm_cands(mol, hist, inter_label, pa_cls, len(inter_atoms))
child_order = tree[i][pa[i]]['label']
diff = set(cls) - set(pa_cls)
for fa_atom in inter_atoms:
for ch_atom in self.mol_graph[fa_atom]:
if ch_atom in diff:
label = self.mol_graph[ch_atom][fa_atom]['label']
if type(label) is int: #in case one bond is assigned multiple times
self.mol_graph[ch_atom][fa_atom]['label'] = (label, child_order)
return order
def build_mol_graph(self):
mol = self.mol
graph = nx.DiGraph(Chem.rdmolops.GetAdjacencyMatrix(mol))
for atom in mol.GetAtoms():
graph.nodes[atom.GetIdx()]['label'] = (atom.GetSymbol(), atom.GetFormalCharge())
for bond in mol.GetBonds():
a1 = bond.GetBeginAtom().GetIdx()
a2 = bond.GetEndAtom().GetIdx()
btype = MolGraph.BOND_LIST.index( bond.GetBondType() )
graph[a1][a2]['label'] = btype
graph[a2][a1]['label'] = btype
return graph
@staticmethod
def tensorize(mol_batch, vocab, avocab):
mol_batch = [MolGraph(x) for x in mol_batch]
tree_tensors, tree_batchG = MolGraph.tensorize_graph([x.mol_tree for x in mol_batch], vocab)
graph_tensors, graph_batchG = MolGraph.tensorize_graph([x.mol_graph for x in mol_batch], avocab)
tree_scope = tree_tensors[-1]
graph_scope = graph_tensors[-1]
max_cls_size = max( [len(c) for x in mol_batch for c in x.clusters] )
cgraph = torch.zeros(len(tree_batchG) + 1, max_cls_size).int()
for v,attr in tree_batchG.nodes(data=True):
bid = attr['batch_id']
offset = graph_scope[bid][0]
tree_batchG.nodes[v]['inter_label'] = inter_label = [(x + offset, y) for x,y in attr['inter_label']]
tree_batchG.nodes[v]['cluster'] = cls = [x + offset for x in attr['cluster']]
tree_batchG.nodes[v]['assm_cands'] = [add(x, offset) for x in attr['assm_cands']]
cgraph[v, :len(cls)] = torch.IntTensor(cls)
all_orders = []
for i,hmol in enumerate(mol_batch):
offset = tree_scope[i][0]
order = [(x + offset, y + offset, z) for x,y,z in hmol.order[:-1]] + [(hmol.order[-1][0] + offset, None, 0)]
all_orders.append(order)
tree_tensors = tree_tensors[:4] + (cgraph, tree_scope)
return (tree_batchG, graph_batchG), (tree_tensors, graph_tensors), all_orders
@staticmethod
def tensorize_graph(graph_batch, vocab):
fnode,fmess = [None],[(0,0,0,0)]
agraph,bgraph = [[]], [[]]
scope = []
edge_dict = {}
all_G = []
for bid,G in enumerate(graph_batch):
offset = len(fnode)
scope.append( (offset, len(G)) )
G = nx.convert_node_labels_to_integers(G, first_label=offset)
all_G.append(G)
fnode.extend( [None for v in G.nodes] )
for v, attr in G.nodes(data='label'):
G.nodes[v]['batch_id'] = bid
fnode[v] = vocab[attr]
agraph.append([])
for u, v, attr in G.edges(data='label'):
if type(attr) is tuple:
fmess.append( (u, v, attr[0], attr[1]) )
else:
fmess.append( (u, v, attr, 0) )
edge_dict[(u, v)] = eid = len(edge_dict) + 1
G[u][v]['mess_idx'] = eid
agraph[v].append(eid)
bgraph.append([])
for u, v in G.edges:
eid = edge_dict[(u, v)]
for w in G.predecessors(u):
if w == v: continue
bgraph[eid].append( edge_dict[(w, u)] )
fnode[0] = fnode[1]
fnode = torch.IntTensor(fnode)
fmess = torch.IntTensor(fmess)
agraph = create_pad_tensor(agraph)
bgraph = create_pad_tensor(bgraph)
return (fnode, fmess, agraph, bgraph, scope), nx.union_all(all_G)
if __name__ == "__main__":
import sys
test_smiles = ['CCC(NC(=O)c1scnc1C1CC1)C(=O)N1CCOCC1','O=C1OCCC1Sc1nnc(-c2c[nH]c3ccccc23)n1C1CC1', 'CCN(C)S(=O)(=O)N1CCC(Nc2cccc(OC)c2)CC1', 'CC(=O)Nc1cccc(NC(C)c2ccccn2)c1', 'Cc1cc(-c2nc3sc(C4CC4)nn3c2C#N)ccc1Cl', 'CCOCCCNC(=O)c1cc(OC)ccc1Br', 'Cc1nc(-c2ccncc2)[nH]c(=O)c1CC(=O)NC1CCCC1', 'C#CCN(CC#C)C(=O)c1cc2ccccc2cc1OC(F)F', 'CCOc1ccc(CN2c3ccccc3NCC2C)cc1N', 'NC(=O)C1CCC(CNc2cc(-c3ccccc3)nc3ccnn23)CC1', 'CC1CCc2noc(NC(=O)c3cc(=O)c4ccccc4o3)c2C1', 'c1cc(-n2cnnc2)cc(-n2cnc3ccccc32)c1', 'Cc1ccc(-n2nc(C)cc2NC(=O)C2CC3C=CC2C3)nn1', 'O=c1ccc(c[nH]1)C1NCCc2ccc3OCCOc3c12']
for s in sys.stdin:#test_smiles:
print(s.strip("\r\n "))
#mol = Chem.MolFromSmiles(s)
#for a in mol.GetAtoms():
# a.SetAtomMapNum( a.GetIdx() )
#print(Chem.MolToSmiles(mol))
hmol = MolGraph(s)
print(hmol.clusters)
#print(list(hmol.mol_tree.edges))
print(nx.get_node_attributes(hmol.mol_tree, 'label'))
#print(nx.get_node_attributes(hmol.mol_tree, 'inter_label'))
#print(nx.get_node_attributes(hmol.mol_tree, 'assm_cands'))
#print(hmol.order)