forked from vikhyat/moondream
-
Notifications
You must be signed in to change notification settings - Fork 0
/
webcam_gradio_demo.py
100 lines (85 loc) · 2.67 KB
/
webcam_gradio_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import argparse
import torch
import re
import time
import gradio as gr
from moondream import detect_device, LATEST_REVISION
from threading import Thread
from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM
parser = argparse.ArgumentParser()
parser.add_argument("--cpu", action="store_true")
args = parser.parse_args()
if args.cpu:
device = torch.device("cpu")
dtype = torch.float32
else:
device, dtype = detect_device()
if device != torch.device("cpu"):
print("Using device:", device)
print("If you run into issues, pass the `--cpu` flag to this script.")
print()
model_id = "vikhyatk/moondream2"
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=LATEST_REVISION)
moondream = AutoModelForCausalLM.from_pretrained(
model_id, trust_remote_code=True, revision=LATEST_REVISION
).to(device=device, dtype=dtype)
moondream.eval()
def answer_question(img, prompt):
image_embeds = moondream.encode_image(img)
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
thread = Thread(
target=moondream.answer_question,
kwargs={
"image_embeds": image_embeds,
"question": prompt,
"tokenizer": tokenizer,
"streamer": streamer,
},
)
thread.start()
buffer = ""
for new_text in streamer:
clean_text = re.sub("<$|END$", "", new_text)
buffer += clean_text
yield buffer.strip("<END")
with gr.Blocks() as demo:
gr.Markdown("# 🌔 moondream")
gr.HTML(
"""
<style type="text/css">
.md_output p {
padding-top: 1rem;
font-size: 1.2rem !important;
}
</style>
"""
)
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
value="What's going on? Respond with a single sentence.",
interactive=True,
)
with gr.Row():
img = gr.Image(type="pil", label="Upload an Image", streaming=True)
output = gr.Markdown(elem_classes=["md_output"])
latest_img = None
latest_prompt = prompt.value
@img.change(inputs=[img])
def img_change(img):
global latest_img
latest_img = img
@prompt.change(inputs=[prompt])
def prompt_change(prompt):
global latest_prompt
latest_prompt = prompt
@demo.load(outputs=[output])
def live_video():
while True:
if latest_img is None:
time.sleep(0.1)
else:
for text in answer_question(latest_img, latest_prompt):
if len(text) > 0:
yield text
demo.queue().launch(debug=True)