-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
121 lines (95 loc) · 3.66 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import numpy as np
import functools
from sklearn.metrics import f1_score, balanced_accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.multiclass import OneVsRestClassifier
from sklearn.preprocessing import normalize, OneHotEncoder
def repeat(n_times):
def decorator(f):
@functools.wraps(f)
def wrapper(*args, **kwargs):
results = [f(*args, **kwargs) for _ in range(n_times)]
statistics = {}
for key in results[0].keys():
values = [r[key] for r in results]
statistics[key] = {
'mean': np.mean(values),
'std': np.std(values)}
print_statistics(statistics, f.__name__)
return statistics
return wrapper
return decorator
def prob_to_one_hot(y_pred):
ret = np.zeros(y_pred.shape, np.bool)
indices = np.argmax(y_pred, axis=1)
for i in range(y_pred.shape[0]):
ret[i][indices[i]] = True
return ret
def print_statistics(statistics, function_name):
print(f'(E) | {function_name}:', end=' ')
for i, key in enumerate(statistics.keys()):
mean = statistics[key]['mean']
std = statistics[key]['std']
print(f'{key}={mean:.4f}+-{std:.4f}', end='')
if i != len(statistics.keys()) - 1:
print(',', end=' ')
else:
print()
@repeat(3)
def label_classification(args, data, embeddings, ratio):
data = data.detach().cpu()
y = data.y
new_y = data.new_y
# occurrences_dict = {}
# new_y = y[data.imb_train_mask].numpy()
# for number in new_y:
# occurrences_dict[number] = occurrences_dict.get(number, 0) + 1
# print(occurrences_dict)
X = embeddings.detach().cpu().numpy()
Y = y.detach().cpu().numpy()
Y = Y.reshape(-1, 1)
onehot_encoder = OneHotEncoder(categories='auto').fit(Y)
Y = onehot_encoder.transform(Y).toarray().astype(np.bool)
new_Y = new_y.detach().cpu().numpy()
new_Y = new_Y.reshape(-1, 1)
onehot_encoder = OneHotEncoder(categories='auto').fit(new_Y)
new_Y = onehot_encoder.transform(new_Y).toarray().astype(np.bool)
X = normalize(X, norm='l2')
if args.split == 'random':
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=1 - ratio)
elif args.split == 'public':
train_mask = data.train_mask
test_mask = data.test_mask
X_train = X[train_mask]
X_test = X[test_mask]
y_train = Y[train_mask]
y_test = Y[test_mask]
elif args.split == 'imbalance':
train_mask = data.imb_train_mask
test_mask = data.test_mask
X_train = X[train_mask]
X_test = X[test_mask]
y_train = new_Y[train_mask]
y_test = Y[test_mask]
logreg = LogisticRegression(solver='liblinear')
c = 2.0 ** np.arange(-10, 10)
clf = GridSearchCV(estimator=OneVsRestClassifier(logreg),
param_grid=dict(estimator__C=c), n_jobs=8, cv=5,
verbose=0)
clf.fit(X_train, y_train)
y_pred = clf.predict_proba(X_test)
y_pred = prob_to_one_hot(y_pred) # (1000, 7)
# preds = np.where(y_pred == True)[1]
acc = f1_score(y_test, y_pred, average="micro")
macro = f1_score(y_test, y_pred, average="macro")
# acc = (data.y[test_mask].numpy() == preds).sum().item()/test_mask.sum().item()
# y_test: (1000, 7), y_pred:(1000, 7)
bacc = balanced_accuracy_score(np.where(y_test == True)[1], np.where(y_pred == True)[1]) #
return {
'Acc': acc,
'Macro-F1': macro,
'BAcc': bacc
# 'acc' : acc
}
#