forked from yueliu1999/SCGC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
217 lines (187 loc) · 6.98 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import torch
import random
import numpy as np
import pickle as pkl
import networkx as nx
import scipy.sparse as sp
from sklearn import metrics
from munkres import Munkres
from kmeans_gpu import kmeans
from sklearn.metrics import adjusted_rand_score as ari_score
from sklearn.metrics.cluster import normalized_mutual_info_score as nmi_score
def load_data(dataset):
names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
objects = []
for i in range(len(names)):
with open("data/ind.{}.{}".format(dataset, names[i]), 'rb') as rf:
u = pkl._Unpickler(rf)
u.encoding = 'latin1'
cur_data = u.load()
objects.append(cur_data)
# objects.append(
# pkl.load(open("data/ind.{}.{}".format(dataset, names[i]), 'rb')))
x, y, tx, ty, allx, ally, graph = tuple(objects)
test_idx_reorder = parse_index_file(
"data/ind.{}.test.index".format(dataset))
test_idx_range = np.sort(test_idx_reorder)
if dataset == 'citeseer':
# Fix citeseer dataset (there are some isolated nodes in the graph)
# Find isolated nodes, add them as zero-vecs into the right position
test_idx_range_full = range(
min(test_idx_reorder), max(test_idx_reorder) + 1)
tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range - min(test_idx_range), :] = tx
tx = tx_extended
ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
ty_extended[test_idx_range - min(test_idx_range), :] = ty
ty = ty_extended
features = sp.vstack((allx, tx)).tolil()
features[test_idx_reorder, :] = features[test_idx_range, :]
features = torch.FloatTensor(np.array(features.todense()))
adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph))
labels = np.vstack((ally, ty))
labels[test_idx_reorder, :] = labels[test_idx_range, :]
return adj, features, np.argmax(labels, 1)
def parse_index_file(filename):
index = []
for line in open(filename):
index.append(int(line.strip()))
return index
def preprocess_graph(adj, layer, norm='sym', renorm=True):
adj = sp.coo_matrix(adj)
ident = sp.eye(adj.shape[0])
if renorm:
adj_ = adj + ident
else:
adj_ = adj
rowsum = np.array(adj_.sum(1))
if norm == 'sym':
degree_mat_inv_sqrt = sp.diags(np.power(rowsum, -0.5).flatten())
adj_normalized = adj_.dot(degree_mat_inv_sqrt).transpose().dot(degree_mat_inv_sqrt).tocoo()
laplacian = ident - adj_normalized
elif norm == 'left':
degree_mat_inv_sqrt = sp.diags(np.power(rowsum, -1.).flatten())
adj_normalized = degree_mat_inv_sqrt.dot(adj_).tocoo()
laplacian = ident - adj_normalized
reg = [1] * (layer)
adjs = []
for i in range(len(reg)):
adjs.append(ident - (reg[i] * laplacian))
return adjs
def laplacian(adj):
rowsum = np.array(adj.sum(1))
degree_mat = sp.diags(rowsum.flatten())
lap = degree_mat - adj
return torch.FloatTensor(lap.toarray())
def cluster_acc(y_true, y_pred):
"""
calculate clustering acc and f1-score
Args:
y_true: the ground truth
y_pred: the clustering id
Returns: acc and f1-score
"""
y_true = y_true - np.min(y_true)
l1 = list(set(y_true))
num_class1 = len(l1)
l2 = list(set(y_pred))
num_class2 = len(l2)
ind = 0
if num_class1 != num_class2:
for i in l1:
if i in l2:
pass
else:
y_pred[ind] = i
ind += 1
l2 = list(set(y_pred))
numclass2 = len(l2)
if num_class1 != numclass2:
print('error')
return
cost = np.zeros((num_class1, numclass2), dtype=int)
for i, c1 in enumerate(l1):
mps = [i1 for i1, e1 in enumerate(y_true) if e1 == c1]
for j, c2 in enumerate(l2):
mps_d = [i1 for i1 in mps if y_pred[i1] == c2]
cost[i][j] = len(mps_d)
m = Munkres()
cost = cost.__neg__().tolist()
indexes = m.compute(cost)
new_predict = np.zeros(len(y_pred))
for i, c in enumerate(l1):
c2 = l2[indexes[i][1]]
ai = [ind for ind, elm in enumerate(y_pred) if elm == c2]
new_predict[ai] = c
acc = metrics.accuracy_score(y_true, new_predict)
f1_macro = metrics.f1_score(y_true, new_predict, average='macro')
return acc, f1_macro
def eva(y_true, y_pred, show_details=True):
"""
evaluate the clustering performance
Args:
y_true: the ground truth
y_pred: the predicted label
show_details: if print the details
Returns: None
"""
acc, f1 = cluster_acc(y_true, y_pred)
nmi = nmi_score(y_true, y_pred, average_method='arithmetic')
ari = ari_score(y_true, y_pred)
if show_details:
print(':acc {:.4f}'.format(acc), ', nmi {:.4f}'.format(nmi), ', ari {:.4f}'.format(ari),
', f1 {:.4f}'.format(f1))
return acc, nmi, ari, f1
def load_graph_data(dataset_name, show_details=False):
"""
load graph data
:param dataset_name: the name of the dataset
:param show_details: if show the details of dataset
- dataset name
- features' shape
- labels' shape
- adj shape
- edge num
- category num
- category distribution
:return: the features, labels and adj
"""
load_path = "dataset/" + dataset_name + "/" + dataset_name
feat = np.load(load_path+"_feat.npy", allow_pickle=True)
label = np.load(load_path+"_label.npy", allow_pickle=True)
adj = np.load(load_path+"_adj.npy", allow_pickle=True)
if show_details:
print("++++++++++++++++++++++++++++++")
print("---details of graph dataset---")
print("++++++++++++++++++++++++++++++")
print("dataset name: ", dataset_name)
print("feature shape: ", feat.shape)
print("label shape: ", label.shape)
print("adj shape: ", adj.shape)
print("undirected edge num: ", int(np.nonzero(adj)[0].shape[0]/2))
print("category num: ", max(label)-min(label)+1)
print("category distribution: ")
for i in range(max(label)+1):
print("label", i, end=":")
print(len(label[np.where(label == i)]))
print("++++++++++++++++++++++++++++++")
return feat, label, adj
def setup_seed(seed):
"""
setup random seed to fix the result
Args:
seed: random seed
Returns: None
"""
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def clustering(feature, true_labels, cluster_num):
predict_labels, _ = kmeans(X=feature, num_clusters=cluster_num, distance="euclidean", device="cuda")
acc, nmi, ari, f1 = eva(true_labels, predict_labels.numpy(), show_details=False)
return round(100 * acc, 2), round(100 * nmi, 2), round(100 * ari, 2), round(100 * f1, 2), predict_labels.numpy()