forked from scylladb/seastar
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcircular_buffer.hh
447 lines (411 loc) · 12.2 KB
/
circular_buffer.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
/*
* This file is open source software, licensed to you under the terms
* of the Apache License, Version 2.0 (the "License"). See the NOTICE file
* distributed with this work for additional information regarding copyright
* ownership. You may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Copyright (C) 2014 Cloudius Systems, Ltd.
*/
#ifndef CIRCULAR_BUFFER_HH_
#define CIRCULAR_BUFFER_HH_
// A growable double-ended queue container that can be efficiently
// extended (and shrunk) from both ends. Implementation is a single
// storage vector.
//
// Similar to libstdc++'s std::deque, except that it uses a single level
// store, and so is more efficient for simple stored items.
// Similar to boost::circular_buffer_space_optimized, except it uses
// uninitialized storage for unoccupied elements (and thus move/copy
// constructors instead of move/copy assignments, which are less efficient).
#include "transfer.hh"
#include "bitops.hh"
#include <memory>
#include <algorithm>
namespace seastar {
template <typename T, typename Alloc = std::allocator<T>>
class circular_buffer {
struct impl : Alloc {
T* storage = nullptr;
// begin, end interpreted (mod capacity)
size_t begin = 0;
size_t end = 0;
size_t capacity = 0;
};
impl _impl;
public:
using value_type = T;
using size_type = size_t;
using reference = T&;
using pointer = T*;
using const_reference = const T&;
using const_pointer = const T*;
public:
circular_buffer() = default;
circular_buffer(circular_buffer&& X);
circular_buffer(const circular_buffer& X) = delete;
~circular_buffer();
circular_buffer& operator=(const circular_buffer&) = delete;
circular_buffer& operator=(circular_buffer&& b) noexcept;
void push_front(const T& data);
void push_front(T&& data);
template <typename... A>
void emplace_front(A&&... args);
void push_back(const T& data);
void push_back(T&& data);
template <typename... A>
void emplace_back(A&&... args);
T& front();
T& back();
void pop_front();
void pop_back();
bool empty() const;
size_t size() const;
size_t capacity() const;
void reserve(size_t);
T& operator[](size_t idx);
template <typename Func>
void for_each(Func func);
// access an element, may return wrong or destroyed element
// only useful if you do not rely on data accuracy (e.g. prefetch)
T& access_element_unsafe(size_t idx);
private:
void expand();
void expand(size_t);
void maybe_expand(size_t nr = 1);
size_t mask(size_t idx) const;
template<typename CB, typename ValueType>
struct cbiterator : std::iterator<std::random_access_iterator_tag, ValueType> {
typedef std::iterator<std::random_access_iterator_tag, ValueType> super_t;
ValueType& operator*() const { return cb->_impl.storage[cb->mask(idx)]; }
ValueType* operator->() const { return &cb->_impl.storage[cb->mask(idx)]; }
// prefix
cbiterator<CB, ValueType>& operator++() {
idx++;
return *this;
}
// postfix
cbiterator<CB, ValueType> operator++(int unused) {
auto v = *this;
idx++;
return v;
}
// prefix
cbiterator<CB, ValueType>& operator--() {
idx--;
return *this;
}
// postfix
cbiterator<CB, ValueType> operator--(int unused) {
auto v = *this;
idx--;
return v;
}
cbiterator<CB, ValueType> operator+(typename super_t::difference_type n) const {
return cbiterator<CB, ValueType>(cb, idx + n);
}
cbiterator<CB, ValueType> operator-(typename super_t::difference_type n) const {
return cbiterator<CB, ValueType>(cb, idx - n);
}
cbiterator<CB, ValueType>& operator+=(typename super_t::difference_type n) {
idx += n;
return *this;
}
cbiterator<CB, ValueType>& operator-=(typename super_t::difference_type n) {
idx -= n;
return *this;
}
bool operator==(const cbiterator<CB, ValueType>& rhs) const {
return idx == rhs.idx;
}
bool operator!=(const cbiterator<CB, ValueType>& rhs) const {
return idx != rhs.idx;
}
bool operator<(const cbiterator<CB, ValueType>& rhs) const {
return idx < rhs.idx;
}
bool operator>(const cbiterator<CB, ValueType>& rhs) const {
return idx > rhs.idx;
}
bool operator>=(const cbiterator<CB, ValueType>& rhs) const {
return idx >= rhs.idx;
}
bool operator<=(const cbiterator<CB, ValueType>& rhs) const {
return idx <= rhs.idx;
}
typename super_t::difference_type operator-(const cbiterator<CB, ValueType>& rhs) const {
return idx - rhs.idx;
}
private:
CB* cb;
size_t idx;
cbiterator<CB, ValueType>(CB* b, size_t i) : cb(b), idx(i) {}
friend class circular_buffer;
};
friend class iterator;
public:
typedef cbiterator<circular_buffer, T> iterator;
typedef cbiterator<const circular_buffer, const T> const_iterator;
iterator begin() {
return iterator(this, _impl.begin);
}
const_iterator begin() const {
return const_iterator(this, _impl.begin);
}
iterator end() {
return iterator(this, _impl.end);
}
const_iterator end() const {
return const_iterator(this, _impl.end);
}
const_iterator cbegin() const {
return const_iterator(this, _impl.begin);
}
const_iterator cend() const {
return const_iterator(this, _impl.end);
}
iterator erase(iterator first, iterator last);
};
template <typename T, typename Alloc>
inline
size_t
circular_buffer<T, Alloc>::mask(size_t idx) const {
return idx & (_impl.capacity - 1);
}
template <typename T, typename Alloc>
inline
bool
circular_buffer<T, Alloc>::empty() const {
return _impl.begin == _impl.end;
}
template <typename T, typename Alloc>
inline
size_t
circular_buffer<T, Alloc>::size() const {
return _impl.end - _impl.begin;
}
template <typename T, typename Alloc>
inline
size_t
circular_buffer<T, Alloc>::capacity() const {
return _impl.capacity;
}
template <typename T, typename Alloc>
inline
void
circular_buffer<T, Alloc>::reserve(size_t size) {
if (capacity() < size) {
// Make sure that the new capacity is a power of two.
expand(size_t(1) << log2ceil(size));
}
}
template <typename T, typename Alloc>
inline
circular_buffer<T, Alloc>::circular_buffer(circular_buffer&& x)
: _impl(std::move(x._impl)) {
x._impl = {};
}
template <typename T, typename Alloc>
inline
circular_buffer<T, Alloc>& circular_buffer<T, Alloc>::operator=(circular_buffer&& x) noexcept {
if (this != &x) {
this->~circular_buffer();
new (this) circular_buffer(std::move(x));
}
return *this;
}
template <typename T, typename Alloc>
template <typename Func>
inline
void
circular_buffer<T, Alloc>::for_each(Func func) {
auto s = _impl.storage;
auto m = _impl.capacity - 1;
for (auto i = _impl.begin; i != _impl.end; ++i) {
func(s[i & m]);
}
}
template <typename T, typename Alloc>
inline
circular_buffer<T, Alloc>::~circular_buffer() {
for_each([this] (T& obj) {
_impl.destroy(&obj);
});
_impl.deallocate(_impl.storage, _impl.capacity);
}
template <typename T, typename Alloc>
void
circular_buffer<T, Alloc>::expand() {
expand(std::max<size_t>(_impl.capacity * 2, 1));
}
template <typename T, typename Alloc>
void
circular_buffer<T, Alloc>::expand(size_t new_cap) {
auto new_storage = _impl.allocate(new_cap);
auto p = new_storage;
try {
for_each([this, &p] (T& obj) {
transfer_pass1(_impl, &obj, p);
p++;
});
} catch (...) {
while (p != new_storage) {
_impl.destroy(--p);
}
_impl.deallocate(new_storage, new_cap);
throw;
}
p = new_storage;
for_each([this, &p] (T& obj) {
transfer_pass2(_impl, &obj, p++);
});
std::swap(_impl.storage, new_storage);
std::swap(_impl.capacity, new_cap);
_impl.begin = 0;
_impl.end = p - _impl.storage;
_impl.deallocate(new_storage, new_cap);
}
template <typename T, typename Alloc>
inline
void
circular_buffer<T, Alloc>::maybe_expand(size_t nr) {
if (_impl.end - _impl.begin + nr > _impl.capacity) {
expand();
}
}
template <typename T, typename Alloc>
inline
void
circular_buffer<T, Alloc>::push_front(const T& data) {
maybe_expand();
auto p = &_impl.storage[mask(_impl.begin - 1)];
_impl.construct(p, data);
--_impl.begin;
}
template <typename T, typename Alloc>
inline
void
circular_buffer<T, Alloc>::push_front(T&& data) {
maybe_expand();
auto p = &_impl.storage[mask(_impl.begin - 1)];
_impl.construct(p, std::move(data));
--_impl.begin;
}
template <typename T, typename Alloc>
template <typename... Args>
inline
void
circular_buffer<T, Alloc>::emplace_front(Args&&... args) {
maybe_expand();
auto p = &_impl.storage[mask(_impl.begin - 1)];
_impl.construct(p, std::forward<Args>(args)...);
--_impl.begin;
}
template <typename T, typename Alloc>
inline
void
circular_buffer<T, Alloc>::push_back(const T& data) {
maybe_expand();
auto p = &_impl.storage[mask(_impl.end)];
_impl.construct(p, data);
++_impl.end;
}
template <typename T, typename Alloc>
inline
void
circular_buffer<T, Alloc>::push_back(T&& data) {
maybe_expand();
auto p = &_impl.storage[mask(_impl.end)];
_impl.construct(p, std::move(data));
++_impl.end;
}
template <typename T, typename Alloc>
template <typename... Args>
inline
void
circular_buffer<T, Alloc>::emplace_back(Args&&... args) {
maybe_expand();
auto p = &_impl.storage[mask(_impl.end)];
_impl.construct(p, std::forward<Args>(args)...);
++_impl.end;
}
template <typename T, typename Alloc>
inline
T&
circular_buffer<T, Alloc>::front() {
return _impl.storage[mask(_impl.begin)];
}
template <typename T, typename Alloc>
inline
T&
circular_buffer<T, Alloc>::back() {
return _impl.storage[mask(_impl.end - 1)];
}
template <typename T, typename Alloc>
inline
void
circular_buffer<T, Alloc>::pop_front() {
_impl.destroy(&front());
++_impl.begin;
}
template <typename T, typename Alloc>
inline
void
circular_buffer<T, Alloc>::pop_back() {
_impl.destroy(&back());
--_impl.end;
}
template <typename T, typename Alloc>
inline
T&
circular_buffer<T, Alloc>::operator[](size_t idx) {
return _impl.storage[mask(_impl.begin + idx)];
}
template <typename T, typename Alloc>
inline
T&
circular_buffer<T, Alloc>::access_element_unsafe(size_t idx) {
return _impl.storage[mask(_impl.begin + idx)];
}
template <typename T, typename Alloc>
inline
typename circular_buffer<T, Alloc>::iterator
circular_buffer<T, Alloc>::erase(iterator first, iterator last) {
static_assert(std::is_nothrow_move_assignable<T>::value, "erase() assumes move assignment does not throw");
if (first == last) {
return last;
}
// Move to the left or right depending on which would result in least amount of moves.
// This also guarantees that iterators will be stable when removing from either front or back.
if (std::distance(begin(), first) < std::distance(last, end())) {
auto new_start = std::move_backward(begin(), first, last);
auto i = begin();
while (i < new_start) {
_impl.destroy(&*i++);
}
_impl.begin = new_start.idx;
return last;
} else {
auto new_end = std::move(last, end(), first);
auto i = new_end;
auto e = end();
while (i < e) {
_impl.destroy(&*i++);
}
_impl.end = new_end.idx;
return first;
}
}
}
#endif /* CIRCULAR_BUFFER_HH_ */