forked from bowang-lab/MedSAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_one_gpu.py
executable file
·375 lines (339 loc) · 12.8 KB
/
train_one_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# -*- coding: utf-8 -*-
"""
train the image encoder and mask decoder
freeze prompt image encoder
"""
# %% setup environment
import numpy as np
import matplotlib.pyplot as plt
import os
join = os.path.join
from tqdm import tqdm
from skimage import transform
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import monai
from segment_anything import sam_model_registry
import torch.nn.functional as F
import argparse
import random
from datetime import datetime
import shutil
import glob
# set seeds
torch.manual_seed(2023)
torch.cuda.empty_cache()
# torch.distributed.init_process_group(backend="gloo")
os.environ["OMP_NUM_THREADS"] = "4" # export OMP_NUM_THREADS=4
os.environ["OPENBLAS_NUM_THREADS"] = "4" # export OPENBLAS_NUM_THREADS=4
os.environ["MKL_NUM_THREADS"] = "6" # export MKL_NUM_THREADS=6
os.environ["VECLIB_MAXIMUM_THREADS"] = "4" # export VECLIB_MAXIMUM_THREADS=4
os.environ["NUMEXPR_NUM_THREADS"] = "6" # export NUMEXPR_NUM_THREADS=6
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([251 / 255, 252 / 255, 30 / 255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(
plt.Rectangle((x0, y0), w, h, edgecolor="blue", facecolor=(0, 0, 0, 0), lw=2)
)
class NpyDataset(Dataset):
def __init__(self, data_root, bbox_shift=20):
self.data_root = data_root
self.gt_path = join(data_root, "gts")
self.img_path = join(data_root, "imgs")
self.gt_path_files = sorted(
glob.glob(join(self.gt_path, "**/*.npy"), recursive=True)
)
self.gt_path_files = [
file
for file in self.gt_path_files
if os.path.isfile(join(self.img_path, os.path.basename(file)))
]
self.bbox_shift = bbox_shift
print(f"number of images: {len(self.gt_path_files)}")
def __len__(self):
return len(self.gt_path_files)
def __getitem__(self, index):
# load npy image (1024, 1024, 3), [0,1]
img_name = os.path.basename(self.gt_path_files[index])
img_1024 = np.load(
join(self.img_path, img_name), "r", allow_pickle=True
) # (1024, 1024, 3)
# convert the shape to (3, H, W)
img_1024 = np.transpose(img_1024, (2, 0, 1))
assert (
np.max(img_1024) <= 1.0 and np.min(img_1024) >= 0.0
), "image should be normalized to [0, 1]"
gt = np.load(
self.gt_path_files[index], "r", allow_pickle=True
) # multiple labels [0, 1,4,5...], (256,256)
assert img_name == os.path.basename(self.gt_path_files[index]), (
"img gt name error" + self.gt_path_files[index] + self.npy_files[index]
)
label_ids = np.unique(gt)[1:]
gt2D = np.uint8(
gt == random.choice(label_ids.tolist())
) # only one label, (256, 256)
assert np.max(gt2D) == 1 and np.min(gt2D) == 0.0, "ground truth should be 0, 1"
y_indices, x_indices = np.where(gt2D > 0)
x_min, x_max = np.min(x_indices), np.max(x_indices)
y_min, y_max = np.min(y_indices), np.max(y_indices)
# add perturbation to bounding box coordinates
H, W = gt2D.shape
x_min = max(0, x_min - random.randint(0, self.bbox_shift))
x_max = min(W, x_max + random.randint(0, self.bbox_shift))
y_min = max(0, y_min - random.randint(0, self.bbox_shift))
y_max = min(H, y_max + random.randint(0, self.bbox_shift))
bboxes = np.array([x_min, y_min, x_max, y_max])
return (
torch.tensor(img_1024).float(),
torch.tensor(gt2D[None, :, :]).long(),
torch.tensor(bboxes).float(),
img_name,
)
# %% sanity test of dataset class
tr_dataset = NpyDataset("data/npy/CT_Abd")
tr_dataloader = DataLoader(tr_dataset, batch_size=8, shuffle=True)
for step, (image, gt, bboxes, names_temp) in enumerate(tr_dataloader):
print(image.shape, gt.shape, bboxes.shape)
# show the example
_, axs = plt.subplots(1, 2, figsize=(25, 25))
idx = random.randint(0, 7)
axs[0].imshow(image[idx].cpu().permute(1, 2, 0).numpy())
show_mask(gt[idx].cpu().numpy(), axs[0])
show_box(bboxes[idx].numpy(), axs[0])
axs[0].axis("off")
# set title
axs[0].set_title(names_temp[idx])
idx = random.randint(0, 7)
axs[1].imshow(image[idx].cpu().permute(1, 2, 0).numpy())
show_mask(gt[idx].cpu().numpy(), axs[1])
show_box(bboxes[idx].numpy(), axs[1])
axs[1].axis("off")
# set title
axs[1].set_title(names_temp[idx])
# plt.show()
plt.subplots_adjust(wspace=0.01, hspace=0)
plt.savefig("./data_sanitycheck.png", bbox_inches="tight", dpi=300)
plt.close()
break
# %% set up parser
parser = argparse.ArgumentParser()
parser.add_argument(
"-i",
"--tr_npy_path",
type=str,
default="data/npy/CT_Abd",
help="path to training npy files; two subfolders: gts and imgs",
)
parser.add_argument("-task_name", type=str, default="MedSAM-ViT-B")
parser.add_argument("-model_type", type=str, default="vit_b")
parser.add_argument(
"-checkpoint", type=str, default="work_dir/SAM/sam_vit_b_01ec64.pth"
)
# parser.add_argument('-device', type=str, default='cuda:0')
parser.add_argument(
"--load_pretrain", type=bool, default=True, help="load pretrain model"
)
parser.add_argument("-pretrain_model_path", type=str, default="")
parser.add_argument("-work_dir", type=str, default="./work_dir")
# train
parser.add_argument("-num_epochs", type=int, default=1000)
parser.add_argument("-batch_size", type=int, default=2)
parser.add_argument("-num_workers", type=int, default=0)
# Optimizer parameters
parser.add_argument(
"-weight_decay", type=float, default=0.01, help="weight decay (default: 0.01)"
)
parser.add_argument(
"-lr", type=float, default=0.0001, metavar="LR", help="learning rate (absolute lr)"
)
parser.add_argument(
"-use_wandb", type=bool, default=False, help="use wandb to monitor training"
)
parser.add_argument("-use_amp", action="store_true", default=False, help="use amp")
parser.add_argument(
"--resume", type=str, default="", help="Resuming training from checkpoint"
)
parser.add_argument("--device", type=str, default="cuda:0")
args = parser.parse_args()
if args.use_wandb:
import wandb
wandb.login()
wandb.init(
project=args.task_name,
config={
"lr": args.lr,
"batch_size": args.batch_size,
"data_path": args.tr_npy_path,
"model_type": args.model_type,
},
)
# %% set up model for training
# device = args.device
run_id = datetime.now().strftime("%Y%m%d-%H%M")
model_save_path = join(args.work_dir, args.task_name + "-" + run_id)
device = torch.device(args.device)
# %% set up model
class MedSAM(nn.Module):
def __init__(
self,
image_encoder,
mask_decoder,
prompt_encoder,
):
super().__init__()
self.image_encoder = image_encoder
self.mask_decoder = mask_decoder
self.prompt_encoder = prompt_encoder
# freeze prompt encoder
for param in self.prompt_encoder.parameters():
param.requires_grad = False
def forward(self, image, box):
image_embedding = self.image_encoder(image) # (B, 256, 64, 64)
# do not compute gradients for prompt encoder
with torch.no_grad():
box_torch = torch.as_tensor(box, dtype=torch.float32, device=image.device)
if len(box_torch.shape) == 2:
box_torch = box_torch[:, None, :] # (B, 1, 4)
sparse_embeddings, dense_embeddings = self.prompt_encoder(
points=None,
boxes=box_torch,
masks=None,
)
low_res_masks, _ = self.mask_decoder(
image_embeddings=image_embedding, # (B, 256, 64, 64)
image_pe=self.prompt_encoder.get_dense_pe(), # (1, 256, 64, 64)
sparse_prompt_embeddings=sparse_embeddings, # (B, 2, 256)
dense_prompt_embeddings=dense_embeddings, # (B, 256, 64, 64)
multimask_output=False,
)
ori_res_masks = F.interpolate(
low_res_masks,
size=(image.shape[2], image.shape[3]),
mode="bilinear",
align_corners=False,
)
return ori_res_masks
def main():
os.makedirs(model_save_path, exist_ok=True)
shutil.copyfile(
__file__, join(model_save_path, run_id + "_" + os.path.basename(__file__))
)
sam_model = sam_model_registry[args.model_type](checkpoint=args.checkpoint)
medsam_model = MedSAM(
image_encoder=sam_model.image_encoder,
mask_decoder=sam_model.mask_decoder,
prompt_encoder=sam_model.prompt_encoder,
).to(device)
medsam_model.train()
print(
"Number of total parameters: ",
sum(p.numel() for p in medsam_model.parameters()),
) # 93735472
print(
"Number of trainable parameters: ",
sum(p.numel() for p in medsam_model.parameters() if p.requires_grad),
) # 93729252
img_mask_encdec_params = list(medsam_model.image_encoder.parameters()) + list(
medsam_model.mask_decoder.parameters()
)
optimizer = torch.optim.AdamW(
img_mask_encdec_params, lr=args.lr, weight_decay=args.weight_decay
)
print(
"Number of image encoder and mask decoder parameters: ",
sum(p.numel() for p in img_mask_encdec_params if p.requires_grad),
) # 93729252
seg_loss = monai.losses.DiceLoss(sigmoid=True, squared_pred=True, reduction="mean")
# cross entropy loss
ce_loss = nn.BCEWithLogitsLoss(reduction="mean")
# %% train
num_epochs = args.num_epochs
iter_num = 0
losses = []
best_loss = 1e10
train_dataset = NpyDataset(args.tr_npy_path)
print("Number of training samples: ", len(train_dataset))
train_dataloader = DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True,
)
start_epoch = 0
if args.resume is not None:
if os.path.isfile(args.resume):
## Map model to be loaded to specified single GPU
checkpoint = torch.load(args.resume, map_location=device)
start_epoch = checkpoint["epoch"] + 1
medsam_model.load_state_dict(checkpoint["model"])
optimizer.load_state_dict(checkpoint["optimizer"])
if args.use_amp:
scaler = torch.cuda.amp.GradScaler()
for epoch in range(start_epoch, num_epochs):
epoch_loss = 0
for step, (image, gt2D, boxes, _) in enumerate(tqdm(train_dataloader)):
optimizer.zero_grad()
boxes_np = boxes.detach().cpu().numpy()
image, gt2D = image.to(device), gt2D.to(device)
if args.use_amp:
## AMP
with torch.autocast(device_type="cuda", dtype=torch.float16):
medsam_pred = medsam_model(image, boxes_np)
loss = seg_loss(medsam_pred, gt2D) + ce_loss(
medsam_pred, gt2D.float()
)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
else:
medsam_pred = medsam_model(image, boxes_np)
loss = seg_loss(medsam_pred, gt2D) + ce_loss(medsam_pred, gt2D.float())
loss.backward()
optimizer.step()
optimizer.zero_grad()
epoch_loss += loss.item()
iter_num += 1
epoch_loss /= step
losses.append(epoch_loss)
if args.use_wandb:
wandb.log({"epoch_loss": epoch_loss})
print(
f'Time: {datetime.now().strftime("%Y%m%d-%H%M")}, Epoch: {epoch}, Loss: {epoch_loss}'
)
## save the latest model
checkpoint = {
"model": medsam_model.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": epoch,
}
torch.save(checkpoint, join(model_save_path, "medsam_model_latest.pth"))
## save the best model
if epoch_loss < best_loss:
best_loss = epoch_loss
checkpoint = {
"model": medsam_model.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": epoch,
}
torch.save(checkpoint, join(model_save_path, "medsam_model_best.pth"))
# %% plot loss
plt.plot(losses)
plt.title("Dice + Cross Entropy Loss")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.savefig(join(model_save_path, args.task_name + "train_loss.png"))
plt.close()
if __name__ == "__main__":
main()