forked from bubbliiiing/ssd-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathssd.py
151 lines (131 loc) · 6.05 KB
/
ssd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import cv2
import numpy as np
import colorsys
import os
import torch
from nets import ssd
import torch.backends.cudnn as cudnn
from utils.config import Config
from utils.box_utils import letterbox_image,ssd_correct_boxes
from PIL import Image,ImageFont, ImageDraw
from torch.autograd import Variable
MEANS = (104, 117, 123)
class SSD(object):
_defaults = {
"model_path": 'model_data/ssd_weights.pth',
"classes_path": 'model_data/voc_classes.txt',
"model_image_size" : (300, 300, 3),
"confidence": 0.5,
}
@classmethod
def get_defaults(cls, n):
if n in cls._defaults:
return cls._defaults[n]
else:
return "Unrecognized attribute name '" + n + "'"
#---------------------------------------------------#
# 初始化RFB
#---------------------------------------------------#
def __init__(self, **kwargs):
self.__dict__.update(self._defaults)
self.class_names = self._get_class()
self.generate()
#---------------------------------------------------#
# 获得所有的分类
#---------------------------------------------------#
def _get_class(self):
classes_path = os.path.expanduser(self.classes_path)
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
#---------------------------------------------------#
# 获得所有的分类
#---------------------------------------------------#
def generate(self):
# 计算总的种类
self.num_classes = len(self.class_names) + 1
# 载入模型,如果原来的模型里已经包括了模型结构则直接载入。
# 否则先构建模型再载入
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = ssd.get_ssd("test",self.num_classes)
self.net = model
model.load_state_dict(torch.load(self.model_path))
self.net = torch.nn.DataParallel(self.net)
cudnn.benchmark = True
self.net = self.net.cuda()
print('{} model, anchors, and classes loaded.'.format(self.model_path))
# 画框设置不同的颜色
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
#---------------------------------------------------#
# 检测图片
#---------------------------------------------------#
def detect_image(self, image):
image_shape = np.array(np.shape(image)[0:2])
crop_img = np.array(letterbox_image(image, (self.model_image_size[0],self.model_image_size[1])))
photo = np.array(crop_img,dtype = np.float64)
# 图片预处理,归一化
photo = Variable(torch.from_numpy(np.expand_dims(np.transpose(crop_img-MEANS,(2,0,1)),0)).cuda().type(torch.FloatTensor))
preds = self.net(photo)
top_conf = []
top_label = []
top_bboxes = []
for i in range(preds.size(1)):
j = 0
while preds[0, i, j, 0] >= self.confidence:
score = preds[0, i, j, 0]
label_name = self.class_names[i-1]
pt = (preds[0, i, j, 1:]).detach().numpy()
coords = [pt[0], pt[1], pt[2], pt[3]]
top_conf.append(score)
top_label.append(label_name)
top_bboxes.append(coords)
j = j + 1
# 将预测结果进行解码
if len(top_conf)<=0:
return image
top_conf = np.array(top_conf)
top_label = np.array(top_label)
top_bboxes = np.array(top_bboxes)
top_xmin, top_ymin, top_xmax, top_ymax = np.expand_dims(top_bboxes[:,0],-1),np.expand_dims(top_bboxes[:,1],-1),np.expand_dims(top_bboxes[:,2],-1),np.expand_dims(top_bboxes[:,3],-1)
# 去掉灰条
boxes = ssd_correct_boxes(top_ymin,top_xmin,top_ymax,top_xmax,np.array([self.model_image_size[0],self.model_image_size[1]]),image_shape)
font = ImageFont.truetype(font='model_data/simhei.ttf',size=np.floor(3e-2 * np.shape(image)[1] + 0.5).astype('int32'))
thickness = (np.shape(image)[0] + np.shape(image)[1]) // self.model_image_size[0]
for i, c in enumerate(top_label):
predicted_class = c
score = top_conf[i]
top, left, bottom, right = boxes[i]
top = top - 5
left = left - 5
bottom = bottom + 5
right = right + 5
top = max(0, np.floor(top + 0.5).astype('int32'))
left = max(0, np.floor(left + 0.5).astype('int32'))
bottom = min(np.shape(image)[0], np.floor(bottom + 0.5).astype('int32'))
right = min(np.shape(image)[1], np.floor(right + 0.5).astype('int32'))
# 画框框
label = '{} {:.2f}'.format(predicted_class, score)
draw = ImageDraw.Draw(image)
label_size = draw.textsize(label, font)
label = label.encode('utf-8')
print(label)
if top - label_size[1] >= 0:
text_origin = np.array([left, top - label_size[1]])
else:
text_origin = np.array([left, top + 1])
for i in range(thickness):
draw.rectangle(
[left + i, top + i, right - i, bottom - i],
outline=self.colors[self.class_names.index(predicted_class)])
draw.rectangle(
[tuple(text_origin), tuple(text_origin + label_size)],
fill=self.colors[self.class_names.index(predicted_class)])
draw.text(text_origin, str(label,'UTF-8'), fill=(0, 0, 0), font=font)
del draw
return image