forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess-stats-dir.py
executable file
·688 lines (617 loc) · 27.3 KB
/
process-stats-dir.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
#!/usr/bin/python
#
# ==-- process-stats-dir - summarize one or more Swift -stats-output-dirs --==#
#
# This source file is part of the Swift.org open source project
#
# Copyright (c) 2014-2017 Apple Inc. and the Swift project authors
# Licensed under Apache License v2.0 with Runtime Library Exception
#
# See https://swift.org/LICENSE.txt for license information
# See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
#
# ==------------------------------------------------------------------------==#
#
# This file processes the contents of one or more directories generated by
# `swiftc -stats-output-dir` and emits summary data, traces etc. for analysis.
import argparse
import csv
import itertools
import json
import os
import platform
import re
import sys
import time
import urllib
import urllib2
from collections import namedtuple
from operator import attrgetter
from jobstats import (list_stats_dir_profiles,
load_stats_dir, merge_all_jobstats)
MODULE_PAT = re.compile(r'^(\w+)\.')
def module_name_of_stat(name):
return re.match(MODULE_PAT, name).groups()[0]
def stat_name_minus_module(name):
return re.sub(MODULE_PAT, '', name)
# Perform any custom processing of args here, in particular the
# select_stats_from_csv_baseline step, which is a bit subtle.
def vars_of_args(args):
vargs = vars(args)
if args.select_stats_from_csv_baseline is not None:
b = read_stats_dict_from_csv(args.select_stats_from_csv_baseline)
# Sniff baseline stat-names to figure out if they're module-qualified
# even when the user isn't asking us to _output_ module-grouped data.
all_triples = all(len(k.split('.')) == 3 for k in b.keys())
if args.group_by_module or all_triples:
vargs['select_stat'] = set(stat_name_minus_module(k)
for k in b.keys())
else:
vargs['select_stat'] = b.keys()
return vargs
# Passed args with 2-element remainder ["old", "new"], return a list of tuples
# of the form [(name, (oldstats, newstats))] where each name is a common subdir
# of each of "old" and "new", and the stats are those found in the respective
# dirs.
def load_paired_stats_dirs(args):
assert(len(args.remainder) == 2)
paired_stats = []
(old, new) = args.remainder
vargs = vars_of_args(args)
for p in sorted(os.listdir(old)):
full_old = os.path.join(old, p)
full_new = os.path.join(new, p)
if not (os.path.exists(full_old) and os.path.isdir(full_old) and
os.path.exists(full_new) and os.path.isdir(full_new)):
continue
old_stats = load_stats_dir(full_old, **vargs)
new_stats = load_stats_dir(full_new, **vargs)
if len(old_stats) == 0 or len(new_stats) == 0:
continue
paired_stats.append((p, (old_stats, new_stats)))
return paired_stats
def write_catapult_trace(args):
allstats = []
vargs = vars_of_args(args)
for path in args.remainder:
allstats += load_stats_dir(path, **vargs)
allstats.sort(key=attrgetter('start_usec'))
for i in range(len(allstats)):
allstats[i].jobid = i
json.dump([s.to_catapult_trace_obj() for s in allstats], args.output)
def write_lnt_values(args):
vargs = vars_of_args(args)
for d in args.remainder:
stats = load_stats_dir(d, **vargs)
merged = merge_all_jobstats(stats, **vargs)
j = merged.to_lnt_test_obj(args)
if args.lnt_submit is None:
json.dump(j, args.output, indent=4)
else:
url = args.lnt_submit
print "\nsubmitting to LNT server: " + url
json_report = {'input_data': json.dumps(j), 'commit': '1'}
data = urllib.urlencode(json_report)
response_str = urllib2.urlopen(urllib2.Request(url, data))
response = json.loads(response_str.read())
print "### response:"
print response
if 'success' in response:
print "server response:\tSuccess"
else:
print "server response:\tError"
print "error:\t", response['error']
sys.exit(1)
def show_paired_incrementality(args):
fieldnames = ["old_pct", "old_skip",
"new_pct", "new_skip",
"delta_pct", "delta_skip",
"name"]
out = csv.DictWriter(args.output, fieldnames, dialect='excel-tab')
out.writeheader()
vargs = vars_of_args(args)
for (name, (oldstats, newstats)) in load_paired_stats_dirs(args):
olddriver = merge_all_jobstats((x for x in oldstats
if x.is_driver_job()), **vargs)
newdriver = merge_all_jobstats((x for x in newstats
if x.is_driver_job()), **vargs)
if olddriver is None or newdriver is None:
continue
oldpct = olddriver.incrementality_percentage()
newpct = newdriver.incrementality_percentage()
deltapct = newpct - oldpct
oldskip = olddriver.driver_jobs_skipped()
newskip = newdriver.driver_jobs_skipped()
deltaskip = newskip - oldskip
out.writerow(dict(name=name,
old_pct=oldpct, old_skip=oldskip,
new_pct=newpct, new_skip=newskip,
delta_pct=deltapct, delta_skip=deltaskip))
def show_incrementality(args):
fieldnames = ["incrementality", "name"]
out = csv.DictWriter(args.output, fieldnames, dialect='excel-tab')
out.writeheader()
vargs = vars_of_args(args)
for path in args.remainder:
stats = load_stats_dir(path, **vargs)
for s in stats:
if s.is_driver_job():
pct = s.incrementality_percentage()
out.writerow(dict(name=os.path.basename(path),
incrementality=pct))
def diff_and_pct(old, new):
if old == 0:
if new == 0:
return (0, 0.0)
else:
return (new, 100.0)
delta = (new - old)
delta_pct = round((float(delta) / float(old)) * 100.0, 2)
return (delta, delta_pct)
def update_epoch_value(d, name, epoch, value):
changed = 0
if name in d:
(existing_epoch, existing_value) = d[name]
if existing_epoch > epoch:
print("note: keeping newer value %d from epoch %d for %s"
% (existing_value, existing_epoch, name))
epoch = existing_epoch
value = existing_value
elif existing_value == value:
epoch = existing_epoch
else:
(_, delta_pct) = diff_and_pct(existing_value, value)
print ("note: changing value %d -> %d (%.2f%%) for %s" %
(existing_value, value, delta_pct, name))
changed = 1
d[name] = (epoch, value)
return (epoch, value, changed)
def read_stats_dict_from_csv(f, select_stat=''):
infieldnames = ["epoch", "name", "value"]
c = csv.DictReader(f, infieldnames,
dialect='excel-tab',
quoting=csv.QUOTE_NONNUMERIC)
d = {}
sre = re.compile('.*' if len(select_stat) == 0 else
'|'.join(select_stat))
for row in c:
epoch = int(row["epoch"])
name = row["name"]
if sre.search(name) is None:
continue
value = int(row["value"])
update_epoch_value(d, name, epoch, value)
return d
# The idea here is that a "baseline" is a (tab-separated) CSV file full of
# the counters you want to track, each prefixed by an epoch timestamp of
# the last time the value was reset.
#
# When you set a fresh baseline, all stats in the provided stats dir are
# written to the baseline. When you set against an _existing_ baseline,
# only the counters mentioned in the existing baseline are updated, and
# only if their values differ.
#
# Finally, since it's a line-oriented CSV file, you can put:
#
# mybaseline.csv merge=union
#
# in your .gitattributes file, and forget about merge conflicts. The reader
# function above will take the later epoch anytime it detects duplicates,
# so union-merging is harmless. Duplicates will be eliminated whenever the
# next baseline-set is done.
def set_csv_baseline(args):
existing = None
vargs = vars_of_args(args)
if os.path.exists(args.set_csv_baseline):
with open(args.set_csv_baseline, "r") as f:
ss = vargs['select_stat']
existing = read_stats_dict_from_csv(f, select_stat=ss)
print ("updating %d baseline entries in %s" %
(len(existing), args.set_csv_baseline))
else:
print "making new baseline " + args.set_csv_baseline
fieldnames = ["epoch", "name", "value"]
with open(args.set_csv_baseline, "wb") as f:
out = csv.DictWriter(f, fieldnames, dialect='excel-tab',
quoting=csv.QUOTE_NONNUMERIC)
m = merge_all_jobstats((s for d in args.remainder
for s in load_stats_dir(d, **vargs)),
**vargs)
if m is None:
print "no stats found"
return 1
changed = 0
newepoch = int(time.time())
for name in sorted(m.stats.keys()):
epoch = newepoch
value = m.stats[name]
if existing is not None:
if name not in existing:
continue
(epoch, value, chg) = update_epoch_value(existing, name,
epoch, value)
changed += chg
out.writerow(dict(epoch=int(epoch),
name=name,
value=int(value)))
if existing is not None:
print "changed %d entries in baseline" % changed
return 0
OutputRow = namedtuple("OutputRow",
["name", "old", "new",
"delta", "delta_pct"])
def compare_stats(args, old_stats, new_stats):
for name in sorted(old_stats.keys()):
old = old_stats[name]
new = new_stats.get(name, 0)
(delta, delta_pct) = diff_and_pct(old, new)
yield OutputRow(name=name,
old=int(old), new=int(new),
delta=int(delta),
delta_pct=delta_pct)
IMPROVED = -1
UNCHANGED = 0
REGRESSED = 1
def row_state(row, args):
delta_pct_over_thresh = abs(row.delta_pct) > args.delta_pct_thresh
if (row.name.startswith("time.") or '.time.' in row.name):
# Timers are judged as changing if they exceed
# the percentage _and_ absolute-time thresholds
delta_usec_over_thresh = abs(row.delta) > args.delta_usec_thresh
if delta_pct_over_thresh and delta_usec_over_thresh:
return (REGRESSED if row.delta > 0 else IMPROVED)
elif delta_pct_over_thresh:
return (REGRESSED if row.delta > 0 else IMPROVED)
return UNCHANGED
def write_comparison(args, old_stats, new_stats):
rows = list(compare_stats(args, old_stats, new_stats))
sort_key = (attrgetter('delta_pct')
if args.sort_by_delta_pct
else attrgetter('name'))
regressed = [r for r in rows if row_state(r, args) == REGRESSED]
unchanged = [r for r in rows if row_state(r, args) == UNCHANGED]
improved = [r for r in rows if row_state(r, args) == IMPROVED]
regressions = len(regressed)
if args.markdown:
def format_time(v):
if abs(v) > 1000000:
return "{:.1f}s".format(v / 1000000.0)
elif abs(v) > 1000:
return "{:.1f}ms".format(v / 1000.0)
else:
return "{:.1f}us".format(v)
def format_field(field, row):
if field == 'name':
if args.group_by_module:
return stat_name_minus_module(row.name)
else:
return row.name
elif field == 'delta_pct':
s = str(row.delta_pct) + "%"
if args.github_emoji:
if row_state(row, args) == REGRESSED:
s += " :no_entry:"
elif row_state(row, args) == IMPROVED:
s += " :white_check_mark:"
return s
else:
v = int(vars(row)[field])
if row.name.startswith('time.'):
return format_time(v)
else:
return "{:,d}".format(v)
def format_table(elts):
out = args.output
out.write('\n')
out.write(' | '.join(OutputRow._fields))
out.write('\n')
out.write(' | '.join('---:' for _ in OutputRow._fields))
out.write('\n')
for e in elts:
out.write(' | '.join(format_field(f, e)
for f in OutputRow._fields))
out.write('\n')
def format_details(name, elts, is_closed):
out = args.output
details = '<details>\n' if is_closed else '<details open>\n'
out.write(details)
out.write('<summary>%s (%d)</summary>\n'
% (name, len(elts)))
if args.group_by_module:
def keyfunc(e):
return module_name_of_stat(e.name)
elts.sort(key=attrgetter('name'))
for mod, group in itertools.groupby(elts, keyfunc):
groupelts = list(group)
groupelts.sort(key=sort_key, reverse=args.sort_descending)
out.write(details)
out.write('<summary>%s in %s (%d)</summary>\n'
% (name, mod, len(groupelts)))
format_table(groupelts)
out.write('</details>\n')
else:
elts.sort(key=sort_key, reverse=args.sort_descending)
format_table(elts)
out.write('</details>\n')
closed_regressions = (args.close_regressions or len(regressed) == 0)
format_details('Regressed', regressed, closed_regressions)
format_details('Improved', improved, True)
format_details('Unchanged (delta < %s%% or delta < %s)' %
(args.delta_pct_thresh,
format_time(args.delta_usec_thresh)),
unchanged, True)
else:
rows.sort(key=sort_key, reverse=args.sort_descending)
out = csv.DictWriter(args.output, OutputRow._fields,
dialect='excel-tab')
out.writeheader()
for row in rows:
if row_state(row, args) != UNCHANGED:
out.writerow(row._asdict())
return regressions
def compare_to_csv_baseline(args):
vargs = vars_of_args(args)
old_stats = read_stats_dict_from_csv(args.compare_to_csv_baseline,
select_stat=vargs['select_stat'])
m = merge_all_jobstats((s for d in args.remainder
for s in load_stats_dir(d, **vargs)),
**vargs)
old_stats = dict((k, v) for (k, (_, v)) in old_stats.items())
new_stats = m.stats
return write_comparison(args, old_stats, new_stats)
# Summarize immediate difference between two stats-dirs, optionally
def compare_stats_dirs(args):
if len(args.remainder) != 2:
raise ValueError("Expected exactly 2 stats-dirs")
vargs = vars_of_args(args)
(old, new) = args.remainder
old_stats = merge_all_jobstats(load_stats_dir(old, **vargs), **vargs)
new_stats = merge_all_jobstats(load_stats_dir(new, **vargs), **vargs)
return write_comparison(args, old_stats.stats, new_stats.stats)
# Evaluate a boolean expression in terms of the provided stats-dir; all stats
# are projected into python dicts (thus variables in the eval expr) named by
# the last identifier in the stat definition. This means you can evaluate
# things like 'NumIRInsts < 1000' or
# 'NumTypesValidated == NumTypesDeserialized'
def evaluate(args):
if len(args.remainder) != 1:
raise ValueError("Expected exactly 1 stats-dir to evaluate against")
d = args.remainder[0]
vargs = vars_of_args(args)
merged = merge_all_jobstats(load_stats_dir(d, **vargs), **vargs)
env = {}
ident = re.compile(r'(\w+)$')
for (k, v) in merged.stats.items():
if k.startswith("time.") or '.time.' in k:
continue
m = re.search(ident, k)
if m:
i = m.groups()[0]
if args.verbose:
print("%s => %s" % (i, v))
env[i] = v
try:
if eval(args.evaluate, env):
return 0
else:
print("evaluate condition failed: '%s'" % args.evaluate)
return 1
except Exception as e:
print(e)
return 1
# Evaluate a boolean expression in terms of deltas between the provided two
# stats-dirs; works like evaluate() above but on absolute differences
def evaluate_delta(args):
if len(args.remainder) != 2:
raise ValueError("Expected exactly 2 stats-dirs to evaluate-delta")
(old, new) = args.remainder
vargs = vars_of_args(args)
old_stats = merge_all_jobstats(load_stats_dir(old, **vargs), **vargs)
new_stats = merge_all_jobstats(load_stats_dir(new, **vargs), **vargs)
env = {}
ident = re.compile(r'(\w+)$')
for r in compare_stats(args, old_stats.stats, new_stats.stats):
if r.name.startswith("time.") or '.time.' in r.name:
continue
m = re.search(ident, r.name)
if m:
i = m.groups()[0]
if args.verbose:
print("%s => %s" % (i, r.delta))
env[i] = r.delta
try:
if eval(args.evaluate_delta, env):
return 0
else:
print("evaluate-delta condition failed: '%s'" %
args.evaluate_delta)
return 1
except Exception as e:
print(e)
return 1
def render_profiles(args):
flamegraph_pl = args.flamegraph_script
if flamegraph_pl is None:
import distutils.spawn
flamegraph_pl = distutils.spawn.find_executable("flamegraph.pl")
if flamegraph_pl is None:
print("Need flamegraph.pl in $PATH, or pass --flamegraph-script")
vargs = vars_of_args(args)
for statsdir in args.remainder:
jobprofs = list_stats_dir_profiles(statsdir, **vargs)
index_path = os.path.join(statsdir, "profile-index.html")
all_profile_types = set([k for keys in [j.profiles.keys()
for j in jobprofs
if j.profiles is not None]
for k in keys])
with open(index_path, "wb") as index:
for ptype in all_profile_types:
index.write("<h2>Profile type: " + ptype + "</h2>\n")
index.write("<ul>\n")
for j in jobprofs:
if j.is_frontend_job():
index.write(" <li>" +
("Module %s :: %s" %
(j.module, " ".join(j.jobargs))) + "\n")
index.write(" <ul>\n")
profiles = sorted(j.profiles.get(ptype, {}).items())
for counter, path in profiles:
title = ("Module: %s, File: %s, "
"Counter: %s, Profile: %s" %
(j.module, j.input, counter, ptype))
subtitle = j.triple + ", -" + j.opt
svg = os.path.abspath(path + ".svg")
with open(path) as p, open(svg, "wb") as g:
import subprocess
print("Building flamegraph " + svg)
subprocess.check_call([flamegraph_pl,
"--title", title,
"--subtitle", subtitle],
stdin=p, stdout=g)
link = ("<tt><a href=\"file://%s\">%s</a></tt>" %
(svg, counter))
index.write(" <li>" + link + "\n")
index.write(" </ul>\n")
index.write(" </li>\n")
if args.browse_profiles:
import webbrowser
webbrowser.open_new_tab("file://" + os.path.abspath(index_path))
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--verbose", action="store_true",
help="Report activity verbosely")
parser.add_argument("--output", default="-",
type=argparse.FileType('wb', 0),
help="Write output to file")
parser.add_argument("--paired", action="store_true",
help="Process two dirs-of-stats-dirs, pairwise")
parser.add_argument("--delta-pct-thresh", type=float, default=0.01,
help="Percentage change required to report")
parser.add_argument("--delta-usec-thresh", type=int, default=100000,
help="Absolute delta on times required to report")
parser.add_argument("--lnt-machine", type=str, default=platform.node(),
help="Machine name for LNT submission")
parser.add_argument("--lnt-run-info", action='append', default=[],
type=lambda kv: kv.split("="),
help="Extra key=value pairs for LNT run-info")
parser.add_argument("--lnt-machine-info", action='append', default=[],
type=lambda kv: kv.split("="),
help="Extra key=value pairs for LNT machine-info")
parser.add_argument("--lnt-order", type=str,
default=str(int(time.time())),
help="Order for LNT submission")
parser.add_argument("--lnt-tag", type=str, default="swift-compile",
help="Tag for LNT submission")
parser.add_argument("--lnt-submit", type=str, default=None,
help="URL to submit LNT data to (rather than print)")
parser.add_argument("--select-module",
default=[],
action="append",
help="Select specific modules")
parser.add_argument("--group-by-module",
default=False,
action="store_true",
help="Group stats by module")
parser.add_argument("--select-stat",
default=[],
action="append",
help="Select specific statistics")
parser.add_argument("--select-stats-from-csv-baseline",
type=argparse.FileType('rb', 0), default=None,
help="Select statistics present in a CSV baseline")
parser.add_argument("--exclude-timers",
default=False,
action="store_true",
help="only select counters, exclude timers")
parser.add_argument("--sort-by-delta-pct",
default=False,
action="store_true",
help="Sort comparison results by delta-%%, not stat")
parser.add_argument("--sort-descending",
default=False,
action="store_true",
help="Sort comparison results in descending order")
parser.add_argument("--merge-by",
default="sum",
type=str,
help="Merge identical metrics by (sum|min|max)")
parser.add_argument("--merge-timers",
default=False,
action="store_true",
help="Merge timers across modules/targets/etc.")
parser.add_argument("--divide-by",
default=1,
metavar="D",
type=int,
help="Divide stats by D (to take an average)")
parser.add_argument("--markdown",
default=False,
action="store_true",
help="Write output in markdown table format")
parser.add_argument("--include-unchanged",
default=False,
action="store_true",
help="Include unchanged stats values in comparison")
parser.add_argument("--close-regressions",
default=False,
action="store_true",
help="Close regression details in markdown")
parser.add_argument("--github-emoji",
default=False,
action="store_true",
help="Add github-emoji indicators to markdown")
modes = parser.add_mutually_exclusive_group(required=True)
modes.add_argument("--catapult", action="store_true",
help="emit a 'catapult'-compatible trace of events")
modes.add_argument("--incrementality", action="store_true",
help="summarize the 'incrementality' of a build")
modes.add_argument("--set-csv-baseline", type=str, default=None,
help="Merge stats from a stats-dir into a CSV baseline")
modes.add_argument("--compare-to-csv-baseline",
type=argparse.FileType('rb', 0), default=None,
metavar="BASELINE.csv",
help="Compare stats dir to named CSV baseline")
modes.add_argument("--compare-stats-dirs",
action="store_true",
help="Compare two stats dirs directly")
modes.add_argument("--lnt", action="store_true",
help="Emit an LNT-compatible test summary")
modes.add_argument("--evaluate", type=str, default=None,
help="evaluate an expression of stat-names")
modes.add_argument("--evaluate-delta", type=str, default=None,
help="evaluate an expression of stat-deltas")
modes.add_argument("--render-profiles", action="store_true",
help="render any profiles to SVG flamegraphs")
parser.add_argument("--flamegraph-script", type=str, default=None,
help="path to flamegraph.pl")
parser.add_argument("--browse-profiles", action="store_true",
help="open web browser tabs with rendered profiles")
parser.add_argument('remainder', nargs=argparse.REMAINDER,
help="stats-dirs to process")
args = parser.parse_args()
if len(args.remainder) == 0:
parser.print_help()
return 1
if args.catapult:
write_catapult_trace(args)
elif args.compare_stats_dirs:
return compare_stats_dirs(args)
elif args.set_csv_baseline is not None:
return set_csv_baseline(args)
elif args.compare_to_csv_baseline is not None:
return compare_to_csv_baseline(args)
elif args.incrementality:
if args.paired:
show_paired_incrementality(args)
else:
show_incrementality(args)
elif args.lnt:
write_lnt_values(args)
elif args.evaluate:
return evaluate(args)
elif args.evaluate_delta:
return evaluate_delta(args)
elif args.render_profiles:
return render_profiles(args)
return None
sys.exit(main())