Skip to content

Latest commit

 

History

History
235 lines (163 loc) · 5.4 KB

README.md

File metadata and controls

235 lines (163 loc) · 5.4 KB

Attention Series


1. External Attention Usage

1.1. Paper

"Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks"

1.2. Overview

1.3. Code

from attention.ExternalAttention import ExternalAttention
import torch

input=torch.randn(50,49,512)
ea = ExternalAttention(d_model=512,S=8)
output=ea(input)
print(output.shape)

2. Self Attention Usage

2.1. Paper

"Attention Is All You Need"

1.2. Overview

1.3. Code

from attention.SelfAttention import ScaledDotProductAttention
import torch

input=torch.randn(50,49,512)
sa = ScaledDotProductAttention(d_model=512, d_k=512, d_v=512, h=8)
output=sa(input,input,input)
print(output.shape)

3. Simplified Self Attention Usage

3.1. Paper

None

3.2. Overview

3.3. Code

from attention.SimplifiedSelfAttention import SimplifiedScaledDotProductAttention
import torch

input=torch.randn(50,49,512)
ssa = SimplifiedScaledDotProductAttention(d_model=512, h=8)
output=ssa(input,input,input)
print(output.shape)

4. Squeeze-and-Excitation Attention Usage

4.1. Paper

"Squeeze-and-Excitation Networks"

4.2. Overview

4.3. Code

from attention.SEAttention import SEAttention
import torch

input=torch.randn(50,512,7,7)
se = SEAttention(channel=512,reduction=8)
output=se(input)
print(output.shape)

5. SK Attention Usage

5.1. Paper

"Selective Kernel Networks"

5.2. Overview

5.3. Code

from attention.SKAttention import SKAttention
import torch

input=torch.randn(50,512,7,7)
se = SKAttention(channel=512,reduction=8)
output=se(input)
print(output.shape)

6. CBAM Attention Usage

6.1. Paper

"CBAM: Convolutional Block Attention Module"

6.2. Overview

6.3. Code

from attention.CBAM import CBAMBlock
import torch

input=torch.randn(50,512,7,7)
kernel_size=input.shape[2]
cbam = CBAMBlock(channel=512,reduction=16,kernel_size=kernel_size)
output=cbam(input)
print(output.shape)

7. BAM Attention Usage

7.1. Paper

"BAM: Bottleneck Attention Module---BMCV2018"

7.2. Overview

7.3. Code

from attention.BAM import BAMBlock
import torch

input=torch.randn(50,512,7,7)
bam = BAMBlock(channel=512,reduction=16,dia_val=2)
output=bam(input)
print(output.shape)

MLP Series

1. RepMLP Usage

1.1. Paper

"RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition"

1.2. Overview

1.3. Code

from mlp.repmlp import RepMLP
import torch
from torch import nn

N=4 #batch size
C=512 #input dim
O=1024 #output dim
H=14 #image height
W=14 #image width
h=7 #patch height
w=7 #patch width
fc1_fc2_reduction=1 #reduction ratio
fc3_groups=8 # groups
repconv_kernels=[1,3,5,7] #kernel list
repmlp=RepMLP(C,O,H,W,h,w,fc1_fc2_reduction,fc3_groups,repconv_kernels=repconv_kernels)
x=torch.randn(N,C,H,W)
repmlp.eval()
for module in repmlp.modules():
    if isinstance(module, nn.BatchNorm2d) or isinstance(module, nn.BatchNorm1d):
        nn.init.uniform_(module.running_mean, 0, 0.1)
        nn.init.uniform_(module.running_var, 0, 0.1)
        nn.init.uniform_(module.weight, 0, 0.1)
        nn.init.uniform_(module.bias, 0, 0.1)

#training result
out=repmlp(x)


#inference result
repmlp.switch_to_deploy()
deployout = repmlp(x)

print(((deployout-out)**2).sum())