forked from sfujim/TD3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDDPG.py
134 lines (95 loc) · 4.17 KB
/
DDPG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
import utils
# Implementation of Deep Deterministic Policy Gradients (DDPG)
# Paper: https://arxiv.org/abs/1509.02971
# [Not the implementation used in the TD3 paper]
def var(tensor, volatile=False):
if torch.cuda.is_available():
return Variable(tensor, volatile=volatile).cuda()
else:
return Variable(tensor, volatile=volatile)
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, max_action):
super(Actor, self).__init__()
self.l1 = nn.Linear(state_dim, 400)
self.l2 = nn.Linear(400, 300)
self.l3 = nn.Linear(300, action_dim)
self.max_action = max_action
def forward(self, x):
x = F.relu(self.l1(x))
x = F.relu(self.l2(x))
x = self.max_action * F.tanh(self.l3(x))
return x
class Critic(nn.Module):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
self.l1 = nn.Linear(state_dim, 400)
self.l2 = nn.Linear(400 + action_dim, 300)
self.l3 = nn.Linear(300, 1)
def forward(self, x, u):
x = F.relu(self.l1(x))
x = F.relu(self.l2(torch.cat([x, u], 1)))
x = self.l3(x)
return x
class DDPG(object):
def __init__(self, state_dim, action_dim, max_action):
self.actor = Actor(state_dim, action_dim, max_action)
self.actor_target = Actor(state_dim, action_dim, max_action)
self.actor_target.load_state_dict(self.actor.state_dict())
self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=1e-4)
self.critic = Critic(state_dim, action_dim)
self.critic_target = Critic(state_dim, action_dim)
self.critic_target.load_state_dict(self.critic.state_dict())
self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), weight_decay=1e-2)
if torch.cuda.is_available():
self.actor = self.actor.cuda()
self.actor_target = self.actor_target.cuda()
self.critic = self.critic.cuda()
self.critic_target = self.critic_target.cuda()
self.criterion = nn.MSELoss()
self.state_dim = state_dim
def select_action(self, state):
state = var(torch.FloatTensor(state.reshape(-1, self.state_dim)), volatile=True)
return self.actor(state).cpu().data.numpy().flatten()
def train(self, replay_buffer, iterations, batch_size=64, discount=0.99, tau=0.001):
for it in range(iterations):
# Sample replay buffer
x, y, u, r, d = replay_buffer.sample(batch_size)
state = var(torch.FloatTensor(x))
action = var(torch.FloatTensor(u))
next_state = var(torch.FloatTensor(y), volatile=True)
done = var(torch.FloatTensor(1 - d))
reward = var(torch.FloatTensor(r))
# Q target = reward + discount * Q(next_state, pi(next_state))
target_Q = self.critic_target(next_state, self.actor_target(next_state))
target_Q.volatile = False
target_Q = reward + (done * discount * target_Q)
# Get current Q estimate
current_Q = self.critic(state, action)
# Compute critic loss
critic_loss = self.criterion(current_Q, target_Q)
# Optimize the critic
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# Compute actor loss
actor_loss = -self.critic(state, self.actor(state)).mean()
# Optimize the actor
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# Update the frozen target models
for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)
for param, target_param, in zip(self.actor.parameters(), self.actor_target.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)
def save(self, filename, directory):
torch.save(self.actor.state_dict(), '%s/%s_actor.pth' % (directory, filename))
torch.save(self.critic.state_dict(), '%s/%s_critic.pth' % (directory, filename))
def load(self, filename, directory):
self.actor.load_state_dict(torch.load('%s/%s_actor.pth' % (directory, filename)))
self.critic.load_state_dict(torch.load('%s/%s_critic.pth' % (directory, filename)))