-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathasr_utils.py
executable file
·847 lines (687 loc) · 27.9 KB
/
asr_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
#!/usr/bin/env python3
# Copyright 2017 Johns Hopkins University (Shinji Watanabe)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
import argparse
import copy
import json
import logging
# matplotlib related
import os
import shutil
import tempfile
# chainer related
import chainer
from chainer import training
from chainer.training import extension
from chainer.serializers.npz import DictionarySerializer
from chainer.serializers.npz import NpzDeserializer
# io related
import matplotlib
import numpy as np
import torch
matplotlib.use('Agg')
import pdb
# * -------------------- training iterator related -------------------- *
class CompareValueTrigger(object):
"""Trigger invoked when key value getting bigger or lower than before.
Args:
key (str) : Key of value.
compare_fn ((float, float) -> bool) : Function to compare the values.
trigger (tuple(int, str)) : Trigger that decide the comparison interval.
"""
def __init__(self, key, compare_fn, trigger=(1, 'epoch')):
self._key = key
self._best_value = None
self._interval_trigger = training.util.get_trigger(trigger)
self._init_summary()
self._compare_fn = compare_fn
def __call__(self, trainer):
"""Get value related to the key and compare with current value."""
observation = trainer.observation
summary = self._summary
key = self._key
if key in observation:
summary.add({key: observation[key]})
if not self._interval_trigger(trainer):
return False
stats = summary.compute_mean()
value = float(stats[key]) # copy to CPU
self._init_summary()
if self._best_value is None:
# initialize best value
self._best_value = value
return False
elif self._compare_fn(self._best_value, value):
return True
else:
self._best_value = value
return False
def _init_summary(self):
self._summary = chainer.reporter.DictSummary()
class PlotAttentionReport(extension.Extension):
"""Plot attention reporter.
Args:
att_vis_fn (espnet.nets.*_backend.e2e_asr.E2E.calculate_all_attentions):
Function of attention visualization.
data (list[tuple(str, dict[str, list[Any]])]): List json utt key items.
outdir (str): Directory to save figures.
converter (espnet.asr.*_backend.asr.CustomConverter): Function to convert data.
device (int | torch.device): Device.
reverse (bool): If True, input and output length are reversed.
ikey (str): Key to access input (for ASR ikey="input", for MT ikey="output".)
iaxis (int): Dimension to access input (for ASR iaxis=0, for MT iaxis=1.)
okey (str): Key to access output (for ASR okey="input", MT okay="output".)
oaxis (int): Dimension to access output (for ASR oaxis=0, for MT oaxis=0.)
"""
def __init__(self, att_vis_fn, data, outdir, converter, transform, device, reverse=False,
ikey="input", iaxis=0, okey="output", oaxis=0):
self.att_vis_fn = att_vis_fn
self.data = copy.deepcopy(data)
self.outdir = outdir
self.converter = converter
self.transform = transform
self.device = device
self.reverse = reverse
self.ikey = ikey
self.iaxis = iaxis
self.okey = okey
self.oaxis = oaxis
if not os.path.exists(self.outdir):
os.makedirs(self.outdir)
def __call__(self, trainer):
"""Plot and save image file of att_ws matrix."""
att_ws = self.get_attention_weights()
if isinstance(att_ws, list): # multi-encoder case
num_encs = len(att_ws) - 1
# atts
for i in range(num_encs):
for idx, att_w in enumerate(att_ws[i]):
filename = "%s/%s.ep.{.updater.epoch}.att%d.png" % (
self.outdir, self.data[idx][0], i + 1)
att_w = self.get_attention_weight(idx, att_w)
np_filename = "%s/%s.ep.{.updater.epoch}.att%d.npy" % (
self.outdir, self.data[idx][0], i + 1)
np.save(np_filename.format(trainer), att_w)
self._plot_and_save_attention(att_w, filename.format(trainer))
# han
for idx, att_w in enumerate(att_ws[num_encs]):
filename = "%s/%s.ep.{.updater.epoch}.han.png" % (
self.outdir, self.data[idx][0])
att_w = self.get_attention_weight(idx, att_w)
np_filename = "%s/%s.ep.{.updater.epoch}.han.npy" % (
self.outdir, self.data[idx][0])
np.save(np_filename.format(trainer), att_w)
self._plot_and_save_attention(att_w, filename.format(trainer), han_mode=True)
else:
for idx, att_w in enumerate(att_ws):
filename = "%s/%s.ep.{.updater.epoch}.png" % (
self.outdir, self.data[idx][0])
att_w = self.get_attention_weight(idx, att_w)
np_filename = "%s/%s.ep.{.updater.epoch}.npy" % (
self.outdir, self.data[idx][0])
np.save(np_filename.format(trainer), att_w)
self._plot_and_save_attention(att_w, filename.format(trainer))
def log_attentions(self, logger, step):
"""Add image files of att_ws matrix to the tensorboard."""
att_ws = self.get_attention_weights()
if isinstance(att_ws, list): # multi-encoder case
num_encs = len(att_ws) - 1
# atts
for i in range(num_encs):
for idx, att_w in enumerate(att_ws[i]):
att_w = self.get_attention_weight(idx, att_w)
plot = self.draw_attention_plot(att_w)
logger.add_figure("%s_att%d" % (self.data[idx][0], i + 1), plot.gcf(), step)
plot.clf()
# han
for idx, att_w in enumerate(att_ws[num_encs]):
att_w = self.get_attention_weight(idx, att_w)
plot = self.draw_han_plot(att_w)
logger.add_figure("%s_han" % (self.data[idx][0]), plot.gcf(), step)
plot.clf()
else:
for idx, att_w in enumerate(att_ws):
att_w = self.get_attention_weight(idx, att_w)
plot = self.draw_attention_plot(att_w)
logger.add_figure("%s" % (self.data[idx][0]), plot.gcf(), step)
plot.clf()
def get_attention_weights(self):
"""Return attention weights.
Returns:
numpy.ndarray: attention weights.float. Its shape would be
differ from backend.
* pytorch-> 1) multi-head case => (B, H, Lmax, Tmax), 2) other case => (B, Lmax, Tmax).
* chainer-> (B, Lmax, Tmax)
"""
batch = self.converter([self.transform(self.data)], self.device)
if isinstance(batch, tuple):
att_ws = self.att_vis_fn(*batch)
else:
att_ws = self.att_vis_fn(**batch)
return att_ws
def get_attention_weight(self, idx, att_w):
"""Transform attention matrix with regard to self.reverse."""
if self.reverse:
dec_len = int(self.data[idx][1][self.ikey][self.iaxis]['shape'][0])
enc_len = int(self.data[idx][1][self.okey][self.oaxis]['shape'][0])
else:
dec_len = int(self.data[idx][1][self.okey][self.oaxis]['shape'][0])
enc_len = int(self.data[idx][1][self.ikey][self.iaxis]['shape'][0])
if len(att_w.shape) == 3:
att_w = att_w[:, :dec_len, :enc_len]
else:
att_w = att_w[:dec_len, :enc_len]
return att_w
def draw_attention_plot(self, att_w):
"""Plot the att_w matrix.
Returns:
matplotlib.pyplot: pyplot object with attention matrix image.
"""
import matplotlib.pyplot as plt
att_w = att_w.astype(np.float32)
if len(att_w.shape) == 3:
for h, aw in enumerate(att_w, 1):
plt.subplot(1, len(att_w), h)
plt.imshow(aw, aspect="auto")
plt.xlabel("Encoder Index")
plt.ylabel("Decoder Index")
else:
plt.imshow(att_w, aspect="auto")
plt.xlabel("Encoder Index")
plt.ylabel("Decoder Index")
plt.tight_layout()
return plt
def draw_han_plot(self, att_w):
"""Plot the att_w matrix for hierarchical attention.
Returns:
matplotlib.pyplot: pyplot object with attention matrix image.
"""
import matplotlib.pyplot as plt
if len(att_w.shape) == 3:
for h, aw in enumerate(att_w, 1):
legends = []
plt.subplot(1, len(att_w), h)
for i in range(aw.shape[1]):
plt.plot(aw[:, i])
legends.append('Att{}'.format(i))
plt.ylim([0, 1.0])
plt.xlim([0, aw.shape[0]])
plt.grid(True)
plt.ylabel("Attention Weight")
plt.xlabel("Decoder Index")
plt.legend(legends)
else:
legends = []
for i in range(att_w.shape[1]):
plt.plot(att_w[:, i])
legends.append('Att{}'.format(i))
plt.ylim([0, 1.0])
plt.xlim([0, att_w.shape[0]])
plt.grid(True)
plt.ylabel("Attention Weight")
plt.xlabel("Decoder Index")
plt.legend(legends)
plt.tight_layout()
return plt
def _plot_and_save_attention(self, att_w, filename, han_mode=False):
if han_mode:
plt = self.draw_han_plot(att_w)
else:
plt = self.draw_attention_plot(att_w)
plt.savefig(filename)
plt.close()
def restore_snapshot(model, snapshot, load_fn=chainer.serializers.load_npz):
"""Extension to restore snapshot.
Returns:
An extension function.
"""
@training.make_extension(trigger=(1, 'epoch'))
def restore_snapshot(trainer):
_restore_snapshot(model, snapshot, load_fn)
return restore_snapshot
def _restore_snapshot(model, snapshot, load_fn=chainer.serializers.load_npz):
load_fn(snapshot, model)
logging.info('restored from ' + str(snapshot))
def adadelta_eps_decay(eps_decay):
"""Extension to perform adadelta eps decay.
Args:
eps_decay (float): Decay rate of eps.
Returns:
An extension function.
"""
@training.make_extension(trigger=(1, 'epoch'))
def adadelta_eps_decay(trainer):
_adadelta_eps_decay(trainer, eps_decay)
return adadelta_eps_decay
def _adadelta_eps_decay(trainer, eps_decay):
optimizer = trainer.updater.get_optimizer('main')
# for chainer
if hasattr(optimizer, 'eps'):
current_eps = optimizer.eps
setattr(optimizer, 'eps', current_eps * eps_decay)
logging.info('adadelta eps decayed to ' + str(optimizer.eps))
# pytorch
else:
for p in optimizer.param_groups:
p["eps"] *= eps_decay
logging.info('adadelta eps decayed to ' + str(p["eps"]))
def adam_lr_decay(eps_decay):
"""Extension to perform adam lr decay.
Args:
eps_decay (float): Decay rate of lr.
Returns:
An extension function.
"""
@training.make_extension(trigger=(1, 'epoch'))
def adam_lr_decay(trainer):
_adam_lr_decay(trainer, eps_decay)
return adam_lr_decay
def _adam_lr_decay(trainer, eps_decay):
optimizer = trainer.updater.get_optimizer('main')
# for chainer
if hasattr(optimizer, 'lr'):
current_lr = optimizer.lr
setattr(optimizer, 'lr', current_lr * eps_decay)
logging.info('adam lr decayed to ' + str(optimizer.lr))
# pytorch
else:
for p in optimizer.param_groups:
p["lr"] *= eps_decay
logging.info('adam lr decayed to ' + str(p["lr"]))
def torch_snapshot(savefun=torch.save,
filename='snapshot.ep.{.updater.epoch}'):
"""Extension to take snapshot of the trainer for pytorch.
Returns:
An extension function.
"""
@extension.make_extension(trigger=(1, 'epoch'), priority=-100)
def torch_snapshot(trainer):
_torch_snapshot_object(trainer, trainer, filename.format(trainer), savefun)
return torch_snapshot
def _torch_snapshot_object(trainer, target, filename, savefun):
# make snapshot_dict dictionary
s = DictionarySerializer()
s.save(trainer)
if hasattr(trainer.updater.model, "model"):
# (for TTS)
if hasattr(trainer.updater.model.model, "module"):
model_state_dict = trainer.updater.model.model.module.state_dict()
else:
model_state_dict = trainer.updater.model.model.state_dict()
else:
# (for ASR)
if hasattr(trainer.updater.model, "module"):
model_state_dict = trainer.updater.model.module.state_dict()
else:
model_state_dict = trainer.updater.model.state_dict()
snapshot_dict = {
"trainer": s.target,
"model": model_state_dict,
"optimizer": trainer.updater.get_optimizer('main').state_dict()
}
# save snapshot dictionary
fn = filename.format(trainer)
prefix = 'tmp' + fn
tmpdir = tempfile.mkdtemp(prefix=prefix, dir=trainer.out)
tmppath = os.path.join(tmpdir, fn)
try:
savefun(snapshot_dict, tmppath)
shutil.move(tmppath, os.path.join(trainer.out, fn))
finally:
shutil.rmtree(tmpdir)
def add_gradient_noise(model, iteration, duration=100, eta=1.0, scale_factor=0.55):
"""Adds noise from a standard normal distribution to the gradients.
The standard deviation (`sigma`) is controlled by the three hyper-parameters below.
`sigma` goes to zero (no noise) with more iterations.
Args:
model (torch.nn.model): Model.
iteration (int): Number of iterations.
duration (int) {100, 1000}: Number of durations to control the interval of the `sigma` change.
eta (float) {0.01, 0.3, 1.0}: The magnitude of `sigma`.
scale_factor (float) {0.55}: The scale of `sigma`.
"""
interval = (iteration // duration) + 1
sigma = eta / interval ** scale_factor
for param in model.parameters():
if param.grad is not None:
_shape = param.grad.size()
noise = sigma * torch.randn(_shape).to(param.device)
param.grad += noise
# * -------------------- general -------------------- *
def get_model_conf(model_path, conf_path=None):
"""Get model config information by reading a model config file (model.json).
Args:
model_path (str): Model path.
conf_path (str): Optional model config path.
Returns:
list[int, int, dict[str, Any]]: Config information loaded from json file.
"""
if conf_path is None:
model_conf = os.path.dirname(model_path) + '/model.json'
else:
model_conf = conf_path
with open(model_conf, "rb") as f:
logging.info('reading a config file from ' + model_conf)
confs = json.load(f)
if isinstance(confs, dict):
# for lm
args = confs
return argparse.Namespace(**args)
else:
# for asr, tts, mt
idim, odim, args = confs
return idim, odim, argparse.Namespace(**args)
def chainer_load(path, model):
"""Load chainer model parameters.
Args:
path (str): Model path or snapshot file path to be loaded.
model (chainer.Chain): Chainer model.
"""
if 'snapshot' in path:
chainer.serializers.load_npz(path, model, path='updater/model:main/')
else:
chainer.serializers.load_npz(path, model)
def torch_save(path, model):
"""Save torch model states.
Args:
path (str): Model path to be saved.
model (torch.nn.Module): Torch model.
"""
if hasattr(model, 'module'):
torch.save(model.module.state_dict(), path)
else:
torch.save(model.state_dict(), path)
def snapshot_object(target, filename):
"""Returns a trainer extension to take snapshots of a given object.
Args:
target (model): Object to serialize.
filename (str): Name of the file into which the object is serialized.It can
be a format string, where the trainer object is passed to
the :meth: `str.format` method. For example,
``'snapshot_{.updater.iteration}'`` is converted to
``'snapshot_10000'`` at the 10,000th iteration.
Returns:
An extension function.
"""
@extension.make_extension(trigger=(1, 'epoch'), priority=-100)
def snapshot_object(trainer):
torch_save(os.path.join(trainer.out, filename.format(trainer)), target)
return snapshot_object
def torch_load(path, model):
"""Load torch model states.
Args:
path (str): Model path or snapshot file path to be loaded.
model (torch.nn.Module): Torch model.
"""
if 'snapshot' in path:
model_state_dict = torch.load(path, map_location=lambda storage, loc: storage)['model']
else:
model_state_dict = torch.load(path, map_location=lambda storage, loc: storage)
if hasattr(model, 'module'):
model.module.load_state_dict(model_state_dict)
else:
model.load_state_dict(model_state_dict)
del model_state_dict
def torch_resume(snapshot_path, trainer):
"""Resume from snapshot for pytorch.
Args:
snapshot_path (str): Snapshot file path.
trainer (chainer.training.Trainer): Chainer's trainer instance.
"""
# load snapshot
snapshot_dict = torch.load(snapshot_path, map_location=lambda storage, loc: storage)
# restore trainer states
d = NpzDeserializer(snapshot_dict['trainer'])
d.load(trainer)
# restore model states
if hasattr(trainer.updater.model, "model"):
# (for TTS model)
if hasattr(trainer.updater.model.model, "module"):
trainer.updater.model.model.module.load_state_dict(snapshot_dict['model'])
else:
trainer.updater.model.model.load_state_dict(snapshot_dict['model'])
else:
# (for ASR model)
if hasattr(trainer.updater.model, "module"):
trainer.updater.model.module.load_state_dict(snapshot_dict['model'])
else:
trainer.updater.model.load_state_dict(snapshot_dict['model'])
# restore optimizer states
trainer.updater.get_optimizer('main').load_state_dict(snapshot_dict['optimizer'])
# delete opened snapshot
del snapshot_dict
# * ------------------ recognition related ------------------ *
def parse_hypothesis(hyp, char_list):
"""Parse hypothesis.
Args:
hyp (list[dict[str, Any]]): Recognition hypothesis.
char_list (list[str]): List of characters.
Returns:
tuple(str, str, str, float)
"""
# remove sos and get results
tokenid_as_list = list(map(int, hyp['yseq'][1:]))
token_as_list = [char_list[idx] for idx in tokenid_as_list]
score = float(hyp['score'])
# convert to string
tokenid = " ".join([str(idx) for idx in tokenid_as_list])
token = " ".join(token_as_list)
text = "".join(token_as_list).replace('<space>', ' ')
return text, token, tokenid, score
# Weiran: this is my own edit distance implementation.
def levenshtein(seq1, seq2):
size_x = len(seq1) + 1
size_y = len(seq2) + 1
matrix = np.zeros((size_x, size_y), dtype=np.int32)
for x in range(size_x):
matrix[x, 0] = x
for y in range(size_y):
matrix[0, y] = y
for x in range(1, size_x):
for y in range(1, size_y):
if seq1[x-1] == seq2[y-1]:
matrix[x,y] = min(
matrix[x-1, y] + 1,
matrix[x-1, y-1],
matrix[x, y-1] + 1
)
else:
matrix[x,y] = min(
matrix[x-1,y] + 1,
matrix[x-1,y-1] + 1,
matrix[x,y-1] + 1
)
return matrix
def add_results_to_json(js, nbest_hyps, char_list, add_hyp_prefix_wer=False, copy_input=False):
"""Add N-best results to json.
Args:
js (dict[str, Any]): Groundtruth utterance dict.
nbest_hyps_sd (list[dict[str, Any]]): List of hypothesis for multi_speakers: nutts x nspkrs.
char_list (list[str]): List of characters.
Returns:
dict[str, Any]: N-best results added utterance dict.
"""
# copy old json info
new_js = dict()
new_js['utt2spk'] = js['utt2spk']
if copy_input:
for key in js:
if key.startswith('input'):
new_js[key] = js[key]
new_js['output'] = []
for n, hyp in enumerate(nbest_hyps, 1):
# parse hypothesis
rec_text, rec_token, rec_tokenid, score = parse_hypothesis(hyp, char_list)
# copy ground-truth
if len(js['output']) > 0:
out_dic = dict(js['output'][0].items())
else:
# for no reference case (e.g., speech translation)
out_dic = {'name': ''}
# update name
out_dic['name'] += '[%d]' % n
# add recognition results
out_dic['rec_text'] = rec_text
out_dic['rec_token'] = rec_token
out_dic['rec_tokenid'] = rec_tokenid
out_dic['score'] = score
if add_hyp_prefix_wer:
gt_tokens = out_dic['tokenid'].split()
rec_tokens = out_dic['rec_tokenid'].split()
len_rec = len(rec_tokens)
# Weiran: appending <eos> to the ground truth.
gt_tokens.append(rec_tokens[-1])
len_gt = len(gt_tokens)
dis_mat = levenshtein(rec_tokens, gt_tokens)
wers = [dis_mat[l, min(l, len_gt)] for l in range(1, len_rec+1)]
out_dic["rec_wers"] = " ".join([str(we) for we in wers])
# add to list of N-best result dicts
new_js['output'].append(out_dic)
# show 1-best result
if n == 1:
if 'text' in out_dic.keys():
logging.info('groundtruth: %s' % out_dic['text'])
logging.info('prediction : %s' % out_dic['rec_text'])
return new_js
def add_results_to_json_word(js, nbest_hyps, char_list, inverse_word_dict, truth_text):
"""Add N-best results to json.
Args:
js (dict[str, Any]): Groundtruth utterance dict.
nbest_hyps_sd (list[dict[str, Any]]): List of hypothesis for multi_speakers: nutts x nspkrs.
char_list (list[str]): List of characters.
inverse_word_dict (dict[int, str]): index to word mapping
gt_file (str): ground truth text file
Returns:
dict[str, Any]: N-best results added utterance dict.
"""
# copy old json info
new_js = dict()
new_js['utt2spk'] = js['utt2spk']
new_js['output'] = []
for n, hyp in enumerate(nbest_hyps, 1):
# parse hypothesis
rec_tokentext, rec_token, rec_tokenid, score = parse_hypothesis(hyp, char_list)
# remove incomplete word and get results
wordid_as_list = list(filter(lambda x: x>0, map(int, hyp['wseq'])))
word_as_list = [inverse_word_dict[idx] for idx in wordid_as_list]
# convert to string
wordid_text = " ".join([str(idx) for idx in wordid_as_list])
word_text = " ".join(word_as_list)
# copy ground-truth
if len(js['output']) > 0:
out_dic = dict(js['output'][0].items())
else:
# for no reference case (e.g., speech translation)
out_dic = {'name': ''}
if truth_text:
tokentext = out_dic['text']
out_dic['text'] = truth_text
out_dic["tokentext"] = tokentext
# update name
out_dic['name'] += '[%d]' % n
# add recognition results
out_dic['rec_token'] = rec_token
out_dic['rec_tokenid'] = rec_tokenid
out_dic['rec_tokentext'] = rec_tokentext
out_dic['score'] = score
out_dic['rec_wordid'] = wordid_text
out_dic['rec_text'] = word_text
# add to list of N-best result dicts
new_js['output'].append(out_dic)
# show 1-best result
if n == 1:
if 'tokentext' in out_dic.keys():
logging.info('groundtruth in tokens: %s' % out_dic['tokentext'])
logging.info('prediction in tokens: %s' % out_dic['rec_tokentext'])
if 'text' in out_dic.keys():
logging.info('groundtruth in words: %s' % out_dic['text'])
logging.info('prediction in words: %s' % out_dic['rec_text'])
return new_js
def plot_spectrogram(plt, spec, mode='db', fs=None, frame_shift=None,
bottom=True, left=True, right=True, top=False,
labelbottom=True, labelleft=True, labelright=True,
labeltop=False, cmap='inferno'):
"""Plot spectrogram using matplotlib.
Args:
plt (matplotlib.pyplot): pyplot object.
spec (numpy.ndarray): Input stft (Freq, Time)
mode (str): db or linear.
fs (int): Sample frequency. To convert y-axis to kHz unit.
frame_shift (int): The frame shift of stft. To convert x-axis to second unit.
bottom (bool):Whether to draw the respective ticks.
left (bool):
right (bool):
top (bool):
labelbottom (bool):Whether to draw the respective tick labels.
labelleft (bool):
labelright (bool):
labeltop (bool):
cmap (str): Colormap defined in matplotlib.
"""
spec = np.abs(spec)
if mode == 'db':
x = 20 * np.log10(spec + np.finfo(spec.dtype).eps)
elif mode == 'linear':
x = spec
else:
raise ValueError(mode)
if fs is not None:
ytop = fs / 2000
ylabel = 'kHz'
else:
ytop = x.shape[0]
ylabel = 'bin'
if frame_shift is not None and fs is not None:
xtop = x.shape[1] * frame_shift / fs
xlabel = 's'
else:
xtop = x.shape[1]
xlabel = 'frame'
extent = (0, xtop, 0, ytop)
plt.imshow(x[::-1], cmap=cmap, extent=extent)
if labelbottom:
plt.xlabel('time [{}]'.format(xlabel))
if labelleft:
plt.ylabel('freq [{}]'.format(ylabel))
plt.colorbar().set_label('{}'.format(mode))
plt.tick_params(bottom=bottom, left=left, right=right, top=top,
labelbottom=labelbottom, labelleft=labelleft,
labelright=labelright, labeltop=labeltop)
plt.axis('auto')
# * ------------------ recognition related ------------------ *
def format_mulenc_args(args):
"""Format args for multi-encoder setup.
It deals with following situations: (when args.num_encs=2):
1. args.elayers = None -> args.elayers = [4, 4];
2. args.elayers = 4 -> args.elayers = [4, 4];
3. args.elayers = [4, 4, 4] -> args.elayers = [4, 4].
"""
# default values when None is assigned.
default_dict = {'etype': 'blstmp',
'elayers': 4,
'eunits': 300,
'subsample': '1',
'dropout_rate': 0.0,
'atype': 'dot',
'adim': 320,
'awin': 5,
'aheads': 4,
'aconv_chans': -1,
'aconv_filts': 100
}
for k in default_dict.keys():
if isinstance(vars(args)[k], list):
if len(vars(args)[k]) != args.num_encs:
logging.warning("Length mismatch {}: Convert {} to {}.".format(
k, vars(args)[k], vars(args)[k][:args.num_encs]))
vars(args)[k] = vars(args)[k][:args.num_encs]
else:
if not vars(args)[k]:
# assign default value if it is None
vars(args)[k] = default_dict[k]
logging.warning("{} is not specified, use default value {}.".format(k, default_dict[k]))
# duplicate
logging.warning("Type mismatch {}: Convert {} to {}.".format(
k, vars(args)[k], [vars(args)[k] for _ in range(args.num_encs)]))
vars(args)[k] = [vars(args)[k] for _ in range(args.num_encs)]
return args