Scale-Aware Trident Networks for Object Detection
Yanghao Li*, Yuntao Chen*, Naiyan Wang, Zhaoxiang Zhang
[TridentNet
] [arXiv
] [BibTeX
]
In this repository, we implement TridentNet-Fast in Detectron2. Trident Network (TridentNet) aims to generate scale-specific feature maps with a uniform representational power. We construct a parallel multi-branch architecture in which each branch shares the same transformation parameters but with different receptive fields. TridentNet-Fast is a fast approximation version of TridentNet that could achieve significant improvements without any additional parameters and computational cost.
To train a model, run
python /path/to/detectron2/projects/TridentNet/train_net.py --config-file <config.yaml>
For example, to launch end-to-end TridentNet training with ResNet-50 backbone on 8 GPUs, one should execute:
python /path/to/detectron2/projects/TridentNet/train_net.py --config-file configs/tridentnet_fast_R_50_C4_1x.yaml --num_gpus 8
Model evaluationcan be done similarly:
python /path/to/detectron2/projects/TridentNet/train_net.py --config-file configs/tridentnet_fast_R_50_C4_1x.yaml --eval-only MODEL.WEIGHTS model.pth
Model | Backbone | Head | lr sched | AP | AP50 | AP75 | APs | APm | APl |
---|---|---|---|---|---|---|---|---|---|
Faster | R50-C4 | C5-512ROI | 1X | 35.7 | 56.1 | 38.0 | 19.2 | 40.9 | 48.7 |
TridentFast | R50-C4 | C5-128ROI | 1X | 37.9 | 57.8 | 40.7 | 19.7 | 42.1 | 54.2 |
Faster | R50-C4 | C5-512ROI | 3X | 38.4 | 58.7 | 41.3 | 20.7 | 42.7 | 53.1 |
TridentFast | R50-C4 | C5-128ROI | 3X | 41.0 | 60.9 | 44.2 | 22.7 | 45.2 | 57.0 |
Faster | R101-C4 | C5-512ROI | 3X | 41.1 | 61.4 | 44.0 | 22.2 | 45.5 | 55.9 |
TridentFast | R101-C4 | C5-128ROI | 3X | 43.4 | 62.9 | 46.6 | 24.2 | 47.9 | 59.9 |
If you use TridentNet, please use the following BibTeX entry.
@InProceedings{li2019scale,
title={Scale-Aware Trident Networks for Object Detection},
author={Li, Yanghao and Chen, Yuntao and Wang, Naiyan and Zhang, Zhaoxiang},
journal={The International Conference on Computer Vision (ICCV)},
year={2019}
}