-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathexport.py
70 lines (54 loc) · 2.51 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""export checkpoint file into air, onnx, mindir models"""
import numpy as np
import mindspore as ms
from mindspore import Tensor
from src.model_utils.config import config
from src.model_utils.moxing_adapter import moxing_wrapper
from src.model_utils.device_adapter import get_device_id
from src.FasterRcnn.faster_rcnn import FasterRcnn_Infer
ms.set_context(mode=ms.GRAPH_MODE, device_target=config.device_target)
if config.device_target == "Ascend":
ms.set_context(device_id=get_device_id())
def modelarts_pre_process():
pass
@moxing_wrapper(pre_process=modelarts_pre_process)
def export_fasterrcnn():
""" export_fasterrcnn """
config.restore_bbox = True
config.ori_h = None
config.ori_w = None
net = FasterRcnn_Infer(config=config)
param_dict = ms.load_checkpoint(config.ckpt_file)
param_dict_new = {}
for key, value in param_dict.items():
key = key.replace("ncek", "neck")
param_dict_new["network." + key] = value
ms.load_param_into_net(net, param_dict_new)
device_type = "Ascend" if ms.get_context("device_target") == "Ascend" else "Others"
if device_type == "Ascend":
net.to_float(ms.float16)
img = Tensor(np.zeros([config.test_batch_size, 3, config.img_height, config.img_width]), ms.float32)
img_metas = Tensor(np.random.uniform(0.0, 1.0, size=[config.test_batch_size, 4]), ms.float32)
if not config.restore_bbox:
print("[WARNING] When parameter 'restore_bbox' set to False, "
"ascend310_infer of this project provided will not be available "
"and need to complete 310 infer function by yourself.")
ms.export(net, img, file_name=config.file_name, file_format=config.file_format)
else:
ms.export(net, img, img_metas, file_name=config.file_name, file_format=config.file_format)
if __name__ == '__main__':
export_fasterrcnn()