forked from thelovelab/DESeq2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlfcShrink.R
528 lines (496 loc) · 21.5 KB
/
lfcShrink.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
#' Shrink log2 fold changes
#'
#' Adds shrunken log2 fold changes (LFC) and SE to a
#' results table from \code{DESeq} run without LFC shrinkage.
#' For consistency with \code{results}, the column name \code{lfcSE}
#' is used here although what is returned is a posterior SD.
#' Three shrinkage estimators for LFC are available via \code{type}
#' (see the vignette for more details on the estimators).
#' The apeglm publication demonstrates that 'apeglm' and 'ashr' outperform
#' the original 'normal' shrinkage estimator.
#'
#' See vignette for a comparison of shrinkage estimators on an example dataset.
#' For all shrinkage methods, details on the prior is included in
#' \code{priorInfo(res)}, including the \code{fitted_g} mixture for ashr.
#'
#' \strong{For type="apeglm":}
#' Specifying \code{apeglm} passes along DESeq2 MLE log2
#' fold changes and standard errors to the \code{apeglm} function
#' in the apeglm package, and re-estimates posterior LFCs for
#' the coefficient specified by \code{coef}.
#'
#' \strong{For type="ashr":}
#' Specifying \code{ashr} passes along DESeq2 MLE log2
#' fold changes and standard errors to the \code{ash} function
#' in the ashr package,
#' with arguments \code{mixcompdist="normal"} and \code{method="shrink"}.
#'
#' \strong{For type="normal":}
#' For design as a formula, shrinkage cannot be applied
#' to coefficients in a model with interaction terms.
#' For user-supplied model matrices, shrinkage is only
#' supported via \code{coef}. \code{coef} will make use
#' of standard model matrices, while \code{contrast}
#' will make use of expanded model matrices, and for the
#' latter, a results object should be provided to
#' \code{res}. With numeric- or list-style contrasts,
#' it is possible to use \code{lfcShrink}, but likely easier to use
#' \code{DESeq} with \code{betaPrior=TRUE} followed by \code{results},
#' because the numeric or list should reference the coefficients
#' from the expanded model matrix. These coefficients will be printed
#' to console if 'contrast' is used.
#'
#' @param dds a DESeqDataSet object, after running \code{\link{DESeq}}
#' @param coef the name or number of the coefficient (LFC) to shrink,
#' consult \code{resultsNames(dds)} after running \code{DESeq(dds)}.
#' note: only \code{coef} or \code{contrast} can be specified, not both.
#' \code{apeglm} requires use of \code{coef}.
#' For \code{normal}, one of \code{coef} or \code{contrast} must be provided.
#' @param contrast see argument description in \code{\link{results}}.
#' only \code{coef} or \code{contrast} can be specified, not both.
#' @param res a DESeqResults object. Results table produced by the
#' default pipeline, i.e. \code{DESeq} followed by \code{results}.
#' If not provided, it will be generated internally using \code{coef} or \code{contrast}.
#' For \code{ashr}, if \code{res} is provided, then \code{coef} and \code{contrast} are ignored.
#' @param type
#' \code{"apeglm"} is the adaptive Student's t prior shrinkage estimator from the 'apeglm' package;
#' \code{"ashr"} is the adaptive shrinkage estimator from the 'ashr' package,
#' using a fitted mixture of normals prior
#' - see the Stephens (2016) reference below for citation;
#' \code{"normal"} is the 2014 DESeq2 shrinkage estimator using a Normal prior;
#' @param lfcThreshold a non-negative value which specifies a log2 fold change
#' threshold (as in \code{\link{results}}). This can be used with any
#' shrinkage \code{type}. It will produce new p-values or
#' s-values testing whether the LFC is greater in absolute value than the threshold.
#' The s-values returned in combination with \code{apeglm} or \code{ashr}
#' provide the probability of FSOS events, "false sign or small",
#' among the tests with equal or smaller s-value
#' than a given gene's s-value, where "small" is specified by \code{lfcThreshold}.
#' @param svalue logical, should p-values and adjusted p-values be replaced
#' with s-values when using \code{apeglm} or \code{ashr}. s-values provide the probability
#' of false signs among the tests with equal or smaller s-value than a given given's s-value.
#' See Stephens (2016) reference on s-values.
#' @param returnList logical, should \code{lfcShrink} return a list, where
#' the first element is the results table, and the second element is the
#' output of \code{apeglm} or \code{ashr}
#' @param format same as defined in \code{\link{results}},
#' either \code{"DataFrame"}, \code{"GRanges"}, or \code{"GRangesList"}
#' @param saveCols same as defined in \code{\link{results}},
#' which metadata columns to pass into output
#' @param apeAdapt logical, should \code{apeglm} use the MLE estimates of
#' LFC to adapt the prior, or use default or specified \code{prior.control}
#' @param apeMethod what \code{method} to run \code{apeglm}, which can
#' differ in terms of speed
#' @param parallel if FALSE, no parallelization. if TRUE, parallel
#' execution using \code{BiocParallel}, see same argument of \code{\link{DESeq}}
#' parallelization only used with \code{normal} or \code{apeglm}
#' @param BPPARAM see same argument of \code{\link{DESeq}}
#' @param quiet whether to print messages
#' @param ... arguments passed to \code{apeglm} and \code{ashr}
#'
#' @references
#'
#' Publications for the following shrinkage estimators:
#'
#' \code{type="apeglm"}:
#'
#' Zhu, A., Ibrahim, J.G., Love, M.I. (2018) Heavy-tailed prior distributions for
#' sequence count data: removing the noise and preserving large differences.
#' Bioinformatics. \url{https://doi.org/10.1093/bioinformatics/bty895}
#'
#' \code{type="ashr"}:
#'
#' Stephens, M. (2016) False discovery rates: a new deal.
#' Biostatistics, 18:2. \url{https://doi.org/10.1093/biostatistics/kxw041}
#'
#' \code{type="normal"}:
#'
#' Love, M.I., Huber, W., Anders, S. (2014) Moderated estimation of fold change and
#' dispersion for RNA-seq data with DESeq2. Genome Biology, 15:550.
#' \url{https://doi.org/10.1186/s13059-014-0550-8}
#'
#' Related work, the \code{bayesglm} function in the \code{arm} package:
#'
#' Gelman, A., Jakulin, A., Pittau, M.G. and Su, Y.-S. (2009).
#' A Weakly Informative Default Prior Distribution For Logistic And Other Regression Models.
#' The Annals of Applied Statistics 2:4.
#' \url{http://www.stat.columbia.edu/~gelman/research/published/ priors11.pdf}
#'
#' @return a DESeqResults object with the \code{log2FoldChange} and \code{lfcSE}
#' columns replaced with shrunken LFC and SE.
#' For consistency with \code{results} (and similar to the output of \code{bayesglm})
#' the column name \code{lfcSE} is used here, although what is returned is a posterior SD.
#' For \code{normal} and for \code{apeglm} the estimate is the posterior mode,
#' for \code{ashr} it is the posterior mean.
#' \code{priorInfo(res)} contains information about the shrinkage procedure,
#' relevant to the various methods specified by \code{type}.
#'
#' @export
#'
#' @examples
#'
#' set.seed(1)
#' dds <- makeExampleDESeqDataSet(n=500,betaSD=1)
#' dds <- DESeq(dds)
#' res <- results(dds)
#'
#' # these are the coefficients from the model
#' # we can specify them using 'coef' by name or number below
#' resultsNames(dds)
#'
#' res.ape <- lfcShrink(dds=dds, coef=2, type="apeglm")
#' res.ash <- lfcShrink(dds=dds, coef=2, type="ashr")
#' res.norm <- lfcShrink(dds=dds, coef=2, type="normal")
#'
lfcShrink <- function(dds, coef, contrast, res,
type=c("apeglm","ashr","normal"),
lfcThreshold=0,
svalue=FALSE,
returnList=FALSE,
format=c("DataFrame","GRanges","GRangesList"),
saveCols=NULL,
apeAdapt=TRUE, apeMethod="nbinomCR",
parallel=FALSE, BPPARAM=bpparam(),
quiet=FALSE, ...) {
stopifnot(is(dds, "DESeqDataSet"))
if (!missing(res)) {
if (!is(res, "DESeqResults")) stop("res should be a DESeqResults object, for GRanges output use 'format'")
}
type <- match.arg(type, choices=c("apeglm","ashr","normal"))
format <- match.arg(format, choices=c("DataFrame", "GRanges","GRangesList"))
if (length(resultsNames(dds)) == 0) {
if (type != "apeglm" | (type == "apeglm" & apeAdapt)) {
stop("first run DESeq() before running lfcShrink()")
}
}
if (returnList) {
stopifnot(type %in% c("apeglm","ashr"))
}
betaPrior <- attr(dds,"betaPrior")
if (!is.null(betaPrior) && betaPrior) {
stop("lfcShrink() should be used downstream of DESeq() with betaPrior=FALSE (the default)")
}
stopifnot(length(lfcThreshold) == 1 && lfcThreshold >= 0)
resultsNamesDDS <- resultsNames(dds)
# we can run apeglm without running nbinomWaldTest()
# but we need to go get the column names of the model matrix first...
if (type == "apeglm" & !apeAdapt & length(resultsNames(dds)) == 0) {
resultsNamesDDS <- colnames(model.matrix(design(dds), data=colData(dds)))
}
# checks on the coef numeric or character wrt resultsNames(dds)
if (!missing(coef)) {
if (is.numeric(coef)) {
stopifnot(coef <= length(resultsNamesDDS))
coefAlpha <- resultsNamesDDS[coef]
coefNum <- coef
} else if (is.character(coef)) {
stopifnot(coef %in% resultsNamesDDS)
coefNum <- which(resultsNamesDDS == coef)
coefAlpha <- coef
}
}
if (missing(res)) {
if (!missing(coef)) {
res <- results(dds, name=coefAlpha)
} else if (!missing(contrast)) {
if (type=="normal" & is.numeric(contrast)) {
stop("for type='normal' and numeric contrast, user must provide 'res' object")
}
res <- results(dds, contrast=contrast)
} else {
stop("one of coef or contrast required if 'res' is missing")
}
}
# check for standard errors
if (all(is.na(res$lfcSE)))
stop("lfcShrink requires standard errors, use default fitType")
if (type %in% c("normal","apeglm")) {
if (is.null(dispersions(dds))) {
stop("type='normal' and 'apeglm' require dispersion estimates, first call estimateDispersions()")
}
stopifnot(all(rownames(dds) == rownames(res)))
if (parallel) {
nworkers <- getNworkers(BPPARAM)
parallelIdx <- factor(sort(rep(seq_len(nworkers),length.out=nrow(dds))))
}
}
if (type == "normal") {
if (missing(coef) & missing(contrast)) {
stop("type='normal' requires either 'coef' or 'contrast' be specified.")
}
############
## normal ##
############
if (!quiet) message("using 'normal' for LFC shrinkage, the Normal prior from Love et al (2014).
Note that type='apeglm' and type='ashr' have shown to have less bias than type='normal'.
See ?lfcShrink for more details on shrinkage type, and the DESeq2 vignette.
Reference: https://doi.org/10.1093/bioinformatics/bty895")
if (is(design(dds), "formula")) {
if (attr(dds, "modelMatrixType") == "user-supplied") {
# if 'full' was used, the model matrix should be stored here
# TODO... better one day to harmonize these two locations:
# 1) provided by 'full' and stashed in attr(dds, "modelMatrix")
# 2) design(dds)
if (!missing(contrast)) {
stop("user-supplied design matrix supports shrinkage only with 'coef'")
}
modelMatrix <- attr(dds, "modelMatrix")
} else {
termsOrder <- attr(terms.formula(design(dds)),"order")
interactionPresent <- any(termsOrder > 1)
if (interactionPresent) {
stop("LFC shrinkage type='normal' not implemented for designs with interactions")
}
modelMatrix <- NULL
}
} else if (is(design(dds), "matrix")) {
if (!missing(contrast)) {
stop("user-supplied design matrix supports shrinkage only with 'coef'")
}
modelMatrix <- design(dds)
}
stopifnot(missing(coef) | missing(contrast))
# find and rename the MLE columns for estimateBetaPriorVar
betaCols <- grep("log2 fold change \\(MLE\\)", mcols(mcols(dds))$description)
stopifnot(length(betaCols) > 0)
if (!any(grepl("MLE_",names(mcols(dds))[betaCols]))) {
names(mcols(dds))[betaCols] <- paste0("MLE_", names(mcols(dds))[betaCols])
}
if (missing(contrast)) {
modelMatrixType <- "standard"
} else {
# contrast, and so using expanded model matrix: run some checks
modelMatrixType <- "expanded"
expMM <- makeExpandedModelMatrix(dds)
resNames <- colnames(expMM)
# quick and dirty checks so as to avoid running DESeq() before hitting error
if (is(contrast, "character")) {
stopifnot(length(contrast) == 3)
stopifnot(contrast[1] %in% names(colData(dds)))
stopifnot(is(colData(dds)[[contrast[1]]], "factor"))
stopifnot(all(contrast[2:3] %in% levels(colData(dds)[[contrast[1]]])))
} else {
message("resultsNames from the expanded model matrix to be referenced by 'contrast':")
message(paste0("'",paste(resNames, collapse="', '"),"'"))
}
contrast <- checkContrast(contrast, resNames)
}
attr(dds,"modelMatrixType") <- modelMatrixType
betaPriorVar <- estimateBetaPriorVar(dds, modelMatrix=modelMatrix)
stopifnot(length(betaPriorVar) > 0)
# parallel fork
if (!parallel) {
dds.shr <- nbinomWaldTest(dds,
betaPrior=TRUE,
betaPriorVar=betaPriorVar,
modelMatrix=modelMatrix,
modelMatrixType=modelMatrixType,
quiet=TRUE)
} else {
dds.shr <- do.call(rbind, bplapply(levels(parallelIdx), function(l) {
nbinomWaldTest(dds[parallelIdx == l,,drop=FALSE],
betaPrior=TRUE,
betaPriorVar=betaPriorVar,
modelMatrix=modelMatrix,
modelMatrixType=modelMatrixType,
quiet=TRUE)
}, BPPARAM=BPPARAM))
}
if (missing(contrast)) {
# parallel not necessary here
res.shr <- results(dds.shr, name=coefAlpha, lfcThreshold=lfcThreshold)
} else {
# parallel may be useful here as novel contrasts can take a while with big designs
res.shr <- results(dds.shr, contrast=contrast, lfcThreshold=lfcThreshold,
parallel=parallel, BPPARAM=BPPARAM)
}
if (lfcThreshold > 0) {
change.cols <- c("log2FoldChange","lfcSE","stat","pvalue","padj")
} else {
change.cols <- c("log2FoldChange","lfcSE")
}
for (column in change.cols) {
res[[column]] <- res.shr[[column]]
}
mcols(res,use.names=TRUE)[change.cols,"description"] <- mcols(res.shr,use.names=TRUE)[change.cols,"description"]
} else if (type == "apeglm") {
############
## apeglm ##
############
if (!requireNamespace("apeglm", quietly=TRUE)) {
stop("type='apeglm' requires installing the Bioconductor package 'apeglm'")
}
if (!missing(contrast)) {
stop("type='apeglm' shrinkage only for use with 'coef'")
}
stopifnot(!missing(coef))
# if we are using adaptive prior, get the LFC columns
if (apeAdapt) {
incomingCoef <- gsub(" ","_",sub("log2 fold change \\(MLE\\): ","",mcols(res)$description[2]))
if (coefAlpha != incomingCoef) {
stop("'coef' should specify same coefficient as in results 'res'")
}
}
if (!quiet) message("using 'apeglm' for LFC shrinkage. If used in published research, please cite:
Zhu, A., Ibrahim, J.G., Love, M.I. (2018) Heavy-tailed prior distributions for
sequence count data: removing the noise and preserving large differences.
Bioinformatics. https://doi.org/10.1093/bioinformatics/bty895")
Y <- counts(dds)
modelMatrixType <- attr(dds, "modelMatrixType")
if (!is.null(modelMatrixType) && modelMatrixType == "user-supplied") {
design <- attr(dds, "modelMatrix")
} else {
design <- model.matrix(design(dds), data=colData(dds))
}
disps <- dispersions(dds)
if (is.null(normalizationFactors(dds))) {
offset <- matrix(log(sizeFactors(dds)),
nrow=nrow(dds), ncol=ncol(dds), byrow=TRUE)
} else {
offset <- log(normalizationFactors(dds))
}
if ("weights" %in% assayNames(dds)) {
weights <- assays(dds)[["weights"]]
} else {
weights <- matrix(1, nrow=nrow(dds), ncol=ncol(dds))
}
if (apeAdapt) {
mle <- log(2) * cbind(res$log2FoldChange, res$lfcSE)
} else {
mle <- NULL
}
if (apeMethod == "general") {
log.lik <- apeglm::logLikNB
} else {
log.lik <- NULL
}
if (lfcThreshold > 0) {
message(paste0("computing FSOS 'false sign or small' s-values (T=",round(lfcThreshold,3),")"))
svalue <- TRUE
apeT <- log(2) * lfcThreshold
} else {
apeT <- NULL
}
# parallel fork
if (!parallel) {
fit <- apeglm::apeglm(Y=Y, x=design, log.lik=log.lik, param=disps,
coef=coefNum, mle=mle, threshold=apeT,
weights=weights, offset=offset,
method=apeMethod, ...)
} else {
fitList <- bplapply(levels(parallelIdx), function(l) {
idx <- parallelIdx == l
apeglm::apeglm(Y=Y[idx,,drop=FALSE], x=design, log.lik=log.lik, param=disps[idx],
coef=coefNum, mle=mle, threshold=apeT,
weights=weights[idx,,drop=FALSE], offset=offset[idx,,drop=FALSE],
method=apeMethod, ...)
})
# collate the objects from the split
fit <- list()
ape.cols <- c("map","sd","fsr","svalue","interval","diag")
if (lfcThreshold > 0) {
ape.cols <- c(ape.cols, "thresh")
}
for (param in ape.cols) {
fit[[param]] <- do.call(rbind, lapply(fitList, `[[`, param))
}
fit$prior.control <- fitList[[1]]$prior.control
fit$svalue <- apeglm::svalue(fit$fsr[,1])
}
stopifnot(nrow(fit$map) == nrow(dds))
conv <- fit$diag[,"conv"]
if (!all(conv[!is.na(conv)] == 0)) {
message("some rows did not converge in finding the MAP")
}
res$log2FoldChange <- log2(exp(1)) * fit$map[,coefNum]
res$lfcSE <- log2(exp(1)) * fit$sd[,coefNum]
mcols(res)$description[2] <- sub("MLE","MAP",mcols(res)$description[2])
mcols(res)$description[3] <- sub("standard error","posterior SD",mcols(res)$description[3])
if (svalue) {
coefAlphaSpaces <- gsub("_"," ",coefAlpha)
res <- res[,1:3]
if (lfcThreshold > 0) {
res$svalue <- as.numeric(apeglm::svalue(fit$thresh))
description <- paste0("FSOS s-value (T=",round(lfcThreshold,3),"): ",coefAlphaSpaces)
} else {
res$svalue <- as.numeric(fit$svalue)
description <- paste0("s-value: ",coefAlphaSpaces)
}
mcols(res)[4,] <- DataFrame(type="results", description=description)
} else {
res <- res[,c(1:3,5:6)]
}
} else if (type == "ashr") {
##########
## ashr ##
##########
if (!requireNamespace("ashr", quietly=TRUE)) {
stop("type='ashr' requires installing the CRAN package 'ashr'")
}
if (!quiet) message("using 'ashr' for LFC shrinkage. If used in published research, please cite:
Stephens, M. (2016) False discovery rates: a new deal. Biostatistics, 18:2.
https://doi.org/10.1093/biostatistics/kxw041")
betahat <- res$log2FoldChange
sebetahat <- res$lfcSE
fit <- ashr::ash(betahat, sebetahat,
mixcompdist="normal", method="shrink", ...)
res$log2FoldChange <- fit$result$PosteriorMean
res$lfcSE <- fit$result$PosteriorSD
mcols(res)$description[2] <- sub("MLE","MMSE",mcols(res)$description[2])
mcols(res)$description[3] <- sub("standard error","posterior SD",mcols(res)$description[3])
# coefficient name (in words, with spaces)
coefAlphaSpaces <- sub(".*p-value: ","",mcols(res)$description[5])
# switch on whether LFC threshold is > 0
if (lfcThreshold == 0) {
if (svalue) {
res <- res[,1:3]
res$svalue <- fit$result$svalue
} else {
res <- res[,c(1:3,5:6)]
}
} else {
message(paste0("computing FSOS 'false sign or small' s-values (T=",round(lfcThreshold,3),")"))
# code contributed by Frederik Ziebell 2022
svalue <- TRUE
cdf_pos_lfc <- ashr::cdf_post(fit$fitted_g, lfcThreshold,
ashr::set_data(betahat, sebetahat))
cdf_neg_lfc <- ashr::cdf_post(fit$fitted_g, -lfcThreshold,
ashr::set_data(betahat, sebetahat))
lfsr <- ifelse(res$log2FoldChange > 0, cdf_pos_lfc, 1 - cdf_neg_lfc)
res$svalue <- apeglm_svalue(lfsr)
}
}
# add metadata column for svalue
if (svalue) {
mcols(res)[4,] <- DataFrame(
type="results",
description=paste("s-value:",coefAlphaSpaces))
}
# stash lfcThreshold and type/pkg details
metadata(res)[["lfcThreshold"]] <- lfcThreshold
pkg <- if (type == "normal") "DESeq2" else type
priorInfo(res) <- list(type=type,
package=pkg,
version=packageVersion(pkg))
# information on the fitted prior
if (type == "normal") {
priorInfo(res) <- c(priorInfo(res), list(betaPriorVar=betaPriorVar))
} else if (type == "apeglm") {
priorInfo(res) <- c(priorInfo(res), list(prior.control=fit$prior.control))
} else if (type == "ashr") {
priorInfo(res) <- c(priorInfo(res), list(fitted_g=fit$fitted_g))
}
res <- resultsFormatSwitch(object=dds, res=res, format=format, saveCols=saveCols)
if (returnList) {
return(list(res=res, fit=fit))
} else {
return(res)
}
}
# copied from apeglm package to avoid extra package installation for ashr shrinkage
apeglm_svalue <- function(lfsr) {
lfsr.sorted <- sort(lfsr, na.last = TRUE)
cumsum.idx <- seq_along(lfsr)
cumsum.lfsr <- cumsum(lfsr.sorted)
(cumsum.lfsr/cumsum.idx)[rank(lfsr, ties.method = "first", na.last = TRUE)]
}