-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathrun_CreateGraph.py
279 lines (239 loc) · 8.9 KB
/
run_CreateGraph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import os
import sys
import Bio
import logging
import argparse
import subprocess
import scipy as sp
import numpy as np
import pandas as pd
import pickle as pkl
import networkx as nx
import scipy.stats as stats
import scipy.sparse as sparse
from Bio import SeqIO
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
# Defined folder
out_f = "out/"
contig_in = "input/"
contig_out = "single_contig/"
file_in_fn = "single_contig/"
file_out_fn = "all_proteins/"
Knowledge_graph = "Cyber_data/"
all_protein_f = out_f+"all_translate_proteins.fa"
proteins_aa_fp = all_protein_f
db_fp = "database/database.dmnd"
diamond_out_fn = '{}.diamond.tab'.format(os.path.basename(proteins_aa_fp).rsplit('.', 1)[0])
diamond_out_fp = os.path.join(out_f, diamond_out_fn)
contig_abc_fp = out_f + diamond_out_fn + ".abc"
abc_fp = out_f+"merged.abc"
# Generating E-edges
print("\n\n" + "{:-^80}".format("Calculating E-edges"))
# loading database
database = "database/"
gene2genome = pd.read_csv(database+"ALL_gene_to_genomes.csv")
contig_id = gene2genome["contig_id"].values
contig_id = [item.replace(" ", "~") for item in contig_id]
gene2genome["contig_id"] = contig_id
#taxnomic_df = pd.read_csv(database+"merged_df.csv", )
#taxnomic_df = taxnomic_df.drop(["Unnamed: 0", 'pos'], axis=1)
protein_to_ref = {protein:ref for protein, ref in zip(gene2genome["protein_id"].values, gene2genome["contig_id"].values)}
#ref_to_num = {ref:num for ref, num in zip(taxnomic_df["contig_id"].values, taxnomic_df["proteins"].values)}
contig_set = list(set(gene2genome["contig_id"].values))
ID_to_ref = {i:ref for i, ref in enumerate(contig_set)}
ref_to_ID = {ref:i for i, ref in enumerate(contig_set)}
fn = "single_contig/"
contig_to_id = {}
file_list = os.listdir(fn)
file_list = sorted(file_list)
for file_n in file_list:
name = file_n.split(".")[0]
contig_to_id[name] = file_list.index(file_n)
# record the row id for each contigs
id_to_contig = {value: key for key, value in contig_to_id.items()}
fn = "out/"
blastp = pd.read_csv(contig_abc_fp, sep=" ", names = ["contigs", "ref", "e-value"])
gene_to_genome = pd.read_csv(fn+"contig_gene_to_genome.csv", sep=",")
e_matrix = np.ones((len(contig_to_id), len(ref_to_ID.keys())))
blast_contigs = blastp["contigs"].values
blast_ref = blastp["ref"].values
blast_value = blastp["e-value"].values
for i in range(len(blast_contigs)):
contig_name = gene_to_genome[gene_to_genome["protein_id"] == blast_contigs[i]]["contig_id"].values
contig_name = contig_name[0]
row_id = contig_to_id[contig_name]
reference = protein_to_ref[blast_ref[i]]
col_id = ref_to_ID[reference]
e_value = float(blast_value[i])
if e_value == 0:
e_value = 1e-250
if e_matrix[row_id][col_id] == 1:
e_matrix[row_id][col_id] = e_value
else:
e_matrix[row_id][col_id] += e_value
e_weight = -np.log10(e_matrix)-50
e_weight[e_weight < 1] = 0
# Generating P-edges
print("\n\n" + "{:-^80}".format("Calculating P-edges"))
database = "database/"
name_to_id = {}
reference_df = pd.read_csv("database/reference_name_id.csv")
tmp_ref = reference_df["name"].values
tmp_id = reference_df["idx"].values
for ref, idx in zip(tmp_ref,tmp_id):
name_to_id[ref.replace(" ", "~")] = idx
#file_list = os.listdir(database+"species/")
#file_list = sorted(file_list)
#for file_n in file_list:
# idx = file_n.split(".")[0]
# for record in SeqIO.parse(database+"species/"+file_n, "fasta"):
# name = record.description
# name = name.split("|")[1]
# name = name.split(",")[0]
# name = name.replace(" ", "~")
# name_to_id[name] = idx
edges = pd.read_csv(out_f+"network.ntw", sep=' ', names=["node1", "node2", "weight"])
merged_df = pd.read_csv(database+"ALL_genome_profile.csv", header=0, index_col=0)
Taxonomic_df = pd.read_csv(database+"taxonomic_label.csv")
merged_df = pd.merge(merged_df, Taxonomic_df, left_on="contig_id", right_on="contig_id", how="inner")
contig_id = merged_df["contig_id"].values
family = merged_df["class"].values
contig_to_family = {name: family for name, family in zip(contig_id, family) if type(family) != type(np.nan) }
G = nx.Graph()
# Add p-edges to the graph
with open(out_f+"/network.ntw") as file_in:
for line in file_in.readlines():
tmp = line[:-1].split(" ")
node1 = tmp[0]
node2 = tmp[1]
weight = float(tmp[2])
#if node1 == "Gordonia~phage~GMA6" or node2 == "Gordonia~phage~GMA6":
# continue
#if node1 == "Acinetobacter~phage~vB_AbaM_ME3" or node2 == "Acinetobacter~phage~vB_AbaM_ME3":
# continue
if "~" in node1 and node1 not in name_to_id.keys():
print(node1)
print("ERROR")
exit(1)
if "~" in node2 and node2 not in name_to_id.keys():
print(node2)
print("ERROR")
exit(1)
G.add_edge(node1, node2, weight = 1)
#if node1 in name_to_id.keys() and node2 in name_to_id.keys():
# G.add_edge(node1, node2, weight = 1)
#elif "_" in node1 and node2 in name_to_id.keys():
# G.add_edge(node1, node2, weight = 1)
#elif node1 in name_to_id.keys() and "_" in node2 :
# G.add_edge(node1, node2, weight = 1)
#elif "_" in node1 and "_" in node2 :
# G.add_edge(node1, node2, weight = 1)
#else:
# continue
# Add e-edges to the graph
cnt = 0
for i in range(e_weight.shape[0]):
contig_name = id_to_contig[i]
if contig_name not in G.nodes():
sorted_idx = np.argsort(e_weight[i])
for j in range(5):
idx = sorted_idx[-j]
if e_weight[i][idx] != 0:
ref_name = ID_to_ref[idx]
if ref_name in G.nodes():
G.add_edge(contig_name, ref_name, weight = 1)
cnt += 1
# remove the uncompressed nodes
node_list = list(G.nodes())
for node in node_list:
if "~" in node and node not in contig_to_family.keys():
G.remove_node(node)
test_to_id = {}
class_to_label = {0: 0, 1: 1, 2: 1, 3: 1, 4: 2, 5: 3, 6: 4, 7: 5, 8: 5, 9: 5, 10: 5, 11: 5, 12: 5, 13: 5, 14: 6, 15: 6, 16: 6, 17: 7, 18: 7, 19: 7, 20: 7, 21: 7, 22: 7, 23: 7, 24: 7, 25: 7, 26: 7}
# Generating the Knowledge Graph
print("\n\n" + "{:-^80}".format("Generating Knowledge graph"))
mode = "testing"
if mode == "validation":
test_mask = []
label = []
cnt = 0
for node in G.nodes():
try:
label.append(class_to_label[contig_to_family[node]])
cnt+=1
except:
if "_" in node:
try:
class_ = int(node.split("_")[0])
label.append(class_)
test_mask.append(cnt)
test_to_id[node] = cnt
cnt+=1
except:
print(node)
else:
print(node)
pkl.dump(test_mask, open("Cyber_data/contig.mask", "wb" ) )
pkl.dump(label, open("Cyber_data/contig.label", "wb" ) )
adj = nx.adjacency_matrix(G)
pkl.dump(adj, open("Cyber_data/contig.graph", "wb" ) )
pkl.dump(test_to_id, open("Cyber_data/contig.dict", "wb" ) )
if mode == "testing":
test_mask = []
label = []
cnt = 0
for node in G.nodes():
try:
label.append(class_to_label[contig_to_family[node]])
cnt+=1
except:
if "_" in node:
try:
label.append(-1)
test_mask.append(cnt)
test_to_id[node] = cnt
cnt+=1
except:
print(node)
else:
print(node)
pkl.dump(test_mask, open("Cyber_data/contig.mask", "wb" ) )
adj = nx.adjacency_matrix(G)
pkl.dump(adj, open("Cyber_data/contig.graph", "wb" ) )
pkl.dump(test_to_id, open("Cyber_data/contig.dict", "wb" ) )
# contructing feature map
fn = "database"
contig_feature = pkl.load(open("Cyber_data/contig.F",'rb'))
database_feature = pkl.load(open(fn+"/dataset_compressF",'rb'))
feature = []
for node in G.nodes():
if "~" not in node:
idx = contig_to_id[node]
feature.append(contig_feature[idx])
else:
try:
idx = int(name_to_id[node])
feature.append(database_feature[idx])
except:
print(node)
feature = np.array(feature)
if mode == "testing":
pkl.dump(feature, open("Cyber_data/contig.feature", "wb" ) )
else:
pkl.dump(feature, open("Cyber_data/contig.feature", "wb" ) )
# Graph check for each testing samples
cnt = 0
for node in G.nodes:
if "~" not in node:
neighbor_label = []
for edge in G.edges(node):
neighbor = edge[1]
if "~" in neighbor:
neighbor_label.append(class_to_label[contig_to_family[neighbor]])
else:
continue
if len(set(neighbor_label)) == 1:
label[test_to_id[node]] = neighbor_label[0]
cnt += 1
pkl.dump(label, open("Cyber_data/contig.label", "wb" ) )