Skip to content

👾 Automated README file generator, powered by large language model APIs.

License

Notifications You must be signed in to change notification settings

Keywords-AI/readme-ai

Repository files navigation

README-AI

Automated README file generator, powered by LLM APIs

github-actions codecov pypi-version pepy-total-downloads

Table of Contents


📍 Overview

Objective

Readme-ai is a developer tool that auto-generates README.md files using a combination of data extraction and generative ai. Simply provide a repository URL or local path to your codebase and a well-structured and detailed README file will be generated for you.

Motivation

Streamlines documentation creation and maintenance, enhancing developer productivity. This project aims to enable all skill levels, across all domains, to better understand, use, and contribute to open-source software.

Important

Readme-ai is currently under development with an opinionated configuration and setup. It is vital to review all generated text from the LLM API to ensure it accurately represents your project.


🤖 Demo

Standard CLI usage, providing a repository URL to generate a README file.

readmeai-cli-demo.mov

Generate a README file without making API calls using the --api offline CLI option.

readmeai-streamlit-demo.mov

Tip

Offline mode is useful for generating a boilerplate README at no cost. View the offline README.md example here!


🔮 Features

Built with flexibility in mind, readme-ai allows users to customize various aspects of the README using CLI options. Content is generated using a combination of data extraction and making a few calls to LLM APIs.

Currently, four sections of the README file are generated using LLMs:

i. Header: Project slogan that describes the repository in an engaging way.
ii. Overview: Provides an intro to the project's core use-case and value proposition.
iii. Features: Markdown table containing details about the project's technical components.
iv. Modules: Codebase file summaries are generated and formatted into markdown tables.

All other content is extracted from processing and analyzing repository metadata and files.

Customizable Header

The header section is built using repository metadata and CLI options. Key features include:

  • Badges: Svg icons that represent codebase metadata, provided by shields.io and skill-icons.
  • Project Logo: Select a project logo image from the base set or provide your image.
  • Project Slogan: Catch phrase that describes the project, generated by generative ai.
  • Table of Contents/Quick Links: Links to the different sections of the README file.

See a few example headers generated by readme-ai below.

default-header
default output (no options provided to cli)
cloud-db-logo
--alignment left --badge-style flat-square --image cloud
gradient-markdown-logo
--alignment left --badge-style flat --image gradient
custom-logo
--badge-style flat --image custom
skills-light
--badge-style skills-light --image grey
readme-ai-header
--badge-style flat-square
black-logo
--badge-style flat --image black

See the Configuration section below for the complete list of CLI options and settings.

📑 Codebase Documentation
Repository Structure

A directory tree structure is generated using pure Python (tree.py) and embedded in the README.

directory-tree
Codebase Summaries

Code summaries are generated using LLMs and grouped by directory, displayed in markdown tables.

llm-summaries
📍 Overview & Features Table

The overview and features sections are generated using LLM APIs. Structured prompt templates are injected with repository metadata to help produce more accurate and relevant content.

Overview

High-level introduction of the project, focused on the value proposition and use-cases, rather than technical aspects.

llm-overview
Features Table

Describes technical components of the codebase, including architecture, dependencies, testing, integrations, and more.

llm-features
🚀 Dynamic Quickstart Guides
Getting Started or Quick Start

Generates structured guides for installing, running, and testing your project. This content is created by identifying dependencies and languages used in the codebase, and mapping this data using static config files such as the commands.toml file.

quick-start
🤝 Contributing Guidelines & More
Additional Sections

The remaining README sections are built from a baseline template that includes common sections such as Project Roadmap, Contributing Guidelines, License, and Acknowledgements.

contributing-and-more
Contributing Guidelines

The contributing guidelines has a dropdown that outlines a general process for contributing to your project.

contributing-guidelines
🧩 Template READMEs

This feature is currently under development. The template system will allow users to generate README files in different flavors, such as ai, data, web development, etc.

README Template for ML & Data


🧑‍🎨 Examples

Output File 📄 Input Repository 📁 Repository Contents 🔢
readme-python.md readme-ai Python
readme-google-vertexai.md readme-ai Python
readme-typescript.md chatgpt-app-react-ts TypeScript, React
readme-postgres.md postgres-proxy-server Postgres, Duckdb
readme-kotlin.md file.io-android-client Kotlin, Android
readme-streamlit.md readme-ai-streamlit Python, Streamlit
readme-rust-c.md rust-c-app C, Rust
readme-go.md go-docker-app Go
readme-java.md java-minimal-todo Java
readme-fastapi-redis.md async-ml-inference FastAPI, Redis
readme-mlops.md mlops-course Python, Jupyter
readme-local.md Local Directory Flink, Python

🚀 Getting Started

Requirements

  • Python: 3.9+
  • Package manager or container runtime: pip or docker recommended.
  • LLM API: OpenAI and Google Vertex AI LLM APIs are currently supported.

Repository

A repository URL or local path to your codebase is required run readme-ai. The following are supported:

OpenAI API Key

An OpenAI API account and API key are needed to use readme-ai. Get started by creating an account here. Once you have an account, you can create an API key on the API settings page.

Warning

Before using readme-ai, its essential to understand the potential risks and costs associated with using AI-powered tools.

  • Review Sensitive Information: Ensure all content in your repository is free of sensitive information before running the tool. This project does not remove sensitive data from your codebase, nor from the output README file.

  • API Usage Costs: The OpenAI API is not free and costs can accumulate quickly! You will be charged for each request made by readme-ai. Be sure to monitor API usage costs using the OpenAI API Usage Dashboard.


⚙️ Installation

Using pip

pip

pip install readmeai

Using docker

docker

docker pull zeroxeli/readme-ai:latest

Using conda

conda

conda install -c conda-forge readmeai

From source

Clone repository and change directory.

$ git clone https://github.com/eli64s/readme-ai
$ cd readme-ai

Using bash

bash

$ bash setup/setup.sh

Using poetry

Poetry

$ poetry install
  • Similiary you can use pipenv or pip to install the requirements.txt.

Tip

pipx

Use pipx to install and run Python command-line applications without causing dependency conflicts with other packages installed on the system.


🧑‍💻 Running readme-ai

OpenAI API Key

Set your OpenAI API key as an environment variable.

# Using Linux or macOS
$ export OPENAI_API_KEY=<your_api_key>

# Using Windows
$ set OPENAI_API=<your_api_key>

Google Vertex AI

Set your Google Cloud project ID and location as environment variables.

$ export VERTEXAI_LOCATION=<your_location>
$ export VERTEXAI_PROJECT=<your_project>

Using pip

pip

readmeai --repository https://github.com/eli64s/readme-ai --api openai

Using docker

docker

docker run -it \
-e OPENAI_API_KEY=$OPENAI_API_KEY \
-v "$(pwd)":/app zeroxeli/readme-ai:latest \
-r https://github.com/eli64s/readme-ai

Using streamlit

Streamlit App

Try directly in your browser on Streamlit, no installation required! For more details, check out the readme-ai-streamlit repository.

From source

Using bash

bash

$ conda activate readmeai
$ python3 -m readmeai.cli.main -r https://github.com/eli64s/readme-ai

Using poetry

Poetry

$ poetry shell
$ poetry run python3 -m readmeai.cli.main -r https://github.com/eli64s/readme-ai

🧪 Tests

Using pytest

pytest

$ make pytest

Using nox

$ nox -f noxfile.py

Tip

Use nox to test application against multiple Python environments and dependencies!


🧩 Configuration

Run the readmeai command in your terminal with the following options to tailor your README file.

CLI Options

Option Type Description Default Value
--alignment, -a String Align the text in the README.md file's header. center
--api String LLM API service to use for text generation. None
--badge-style String Badge icon style types for README.md badges. see below
--badge-color String Badge color name or hex code. 0080ff
--emojis, -e Boolean Adds emojis to the README.md file's header sections. False
--image, -i String Project logo image displayed in the README file header. blue
🚧 --language String Language for generating the README.md file. en
--max-tokens Integer Maximum context window of the LLM API. 3899
--model, -m String LLM API to use for text generation. gpt-3.5-turbo
--output, -o String Output file name for the README file. readme-ai.md
--repository, -r String Repository URL or local directory path. None
--temperature, -t Float Sets the creativity level for content generation. 1.0
🚧 --template String README template style. default
--tree-depth Integer Maximum depth of the directory tree structure. 3
--help Displays help information about the command and its options.

🚧 feature currently under development


Badges

The --badge-style option lets you select the style of the default badge set.

Style Preview
default
flat
flat-square
for-the-badge
plastic
skills Python Skill Icon
skills-light Python Skill Light Icon
social

When providing the --badge-style option, readme-ai does two things:

  1. Formats the default badge set to match the selection (i.e. flat, flat-square, etc.).
  2. Generates an additional badge set representing your projects dependencies and tech stack (i.e. Python, Docker, etc.)

Example

$ readmeai --badge-style flat-square --repository https://github.com/eli64s/readme-ai

Output

{... project logo ...}

{... project name ...}

{...project slogan...}


Developed with the software and tools below.

YAML

{... end of header ...}


Project Logo

Select a project logo using the --image option. The following options are available:

blue gradient black
cloud purple grey

For custom images, see the following options:

  • Use --image custom to invoke a prompt to upload a local image file path or URL.
  • Use --image llm to generate a project logo using a LLM API (in development).

🛠 Project Roadmap

  • Add new CLI options to enhance README file customization.
    • --api Integrate singular interface for all LLM APIs (OpenAI, Google Cloud, etc.)
    • --audit to review existing README files and suggest improvements.
    • --template to select a README template style (i.e. ai, data, web, etc.)
    • --language to generate README files in any language (i.e. zh-CN, ES, FR, JA, KO, RU)
  • Develop robust documentation generator to build full project docs (i.e. Sphinx, MkDocs)
  • Create community-driven templates for README files and gallery of readme-ai examples.
  • GitHub Actions script to automatically update README file content on repository push.

📒 Changelog

Changelog


🤝 Contributing

If you would like to contribute to the project, please see the following guidelines:



📄 License

MIT


👏 Acknowledgments

Badges

Return


About

👾 Automated README file generator, powered by large language model APIs.

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 95.1%
  • Shell 3.9%
  • Other 1.0%