Skip to content

A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

Notifications You must be signed in to change notification settings

Kimeu-Jeff/DGC-Net

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DGC-Net: Dense Geometric Correspondence Network

This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network"

Installation

  • create and activate conda environment with Python 3.x
conda create -n my_fancy_env python=3.7
source activate my_fancy_env
  • install Pytorch v1.0.0 and torchvision library
pip install torch torchvision
  • install all dependencies by running the following command:
pip install -r requirements.txt

Getting started

  • eval.py demonstrates the results on the HPatches dataset To be able to run eval.py script:
  • Download an archive with pre-trained models (click) and unpack it in the project folder
  • Download HPatches dataset (Full image sequences). The dataset is available here at the end of the page
  • Run the following command:
python eval.py --image-data-path /path/to/hpatches-geometry
  • train.py is a script to train DGC-Net/DGCM-Net model from scratch. To run this script, please follow the next procedure:
python train.py --image-data-path /path/to/TokyoTimeMachine

Performance on HPatches dataset

Method / HPatches ID Viewpoint 1 Viewpoint 2 Viewpoint 3 Viewpoint 4 Viewpoint 5
PWC-Net 4.43 11.44 15.47 20.17 28.30
GM best model 9.59 18.55 21.15 27.83 35.19
DGC-Net (paper) 1.55 5.53 8.98 11.66 16.70
DGCM-Net (paper) 2.97 6.85 9.95 12.87 19.13
DGC-Net (repo) 1.74 5.88 9.07 12.14 16.50
DGCM-Net (repo) 2.33 5.62 9.55 11.59 16.48

Note: There is a difference in numbers presented in the original paper and obtained by the models of this repo. It might be related to the fact that both models (DGC-Net and DGCM-Net) have been trained using Pytorch v0.3.

More qualitative results are presented on the "project page"

How to cite

If you use this software in your own research, please cite our publication:

@inproceedings{Melekhov+Tiulpin+Sattler+Pollefeys+Rahtu+Kannala:2018,
      title = {{DGC-Net}: Dense geometric correspondence network},
      author = {Melekhov, Iaroslav and Tiulpin, Aleksei and 
               Sattler, Torsten, and 
               Pollefeys, Marc and 
               Rahtu, Esa and Kannala, Juho},
       year = {2019},
       booktitle = {Proceedings of the IEEE Winter Conference on 
                    Applications of Computer Vision (WACV)}
}

About

A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 79.9%
  • Python 20.1%