-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathTrain_webvision_parallel.py
497 lines (389 loc) · 20.1 KB
/
Train_webvision_parallel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
from __future__ import print_function
import sys
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import random
import os
import sys
import argparse
import numpy as np
from InceptionResNetV2 import *
from sklearn.mixture import GaussianMixture
import dataloader_webvision as dataloader
import torchnet
import torch.multiprocessing as mp
from tqdm import tqdm
parser = argparse.ArgumentParser(description='PyTorch WebVision Parallel Training')
parser.add_argument('--batch_size', default=32, type=int, help='train batchsize')
parser.add_argument('--lr', '--learning_rate', default=0.01, type=float, help='initial learning rate')
parser.add_argument('--alpha', default=0.5, type=float, help='parameter for Beta')
parser.add_argument('--lambda_u', default=0, type=float, help='weight for unsupervised loss')
parser.add_argument('--p_threshold', default=0.5, type=float, help='clean probability threshold')
parser.add_argument('--T', default=0.5, type=float, help='sharpening temperature')
parser.add_argument('--num_epochs', default=100, type=int)
parser.add_argument('--id', default='',type=str)
parser.add_argument('--seed', default=123)
parser.add_argument('--gpuid1', default=0, type=int)
parser.add_argument('--gpuid2', default=2, type=int)
parser.add_argument('--num_class', default=50, type=int)
parser.add_argument('--data_path', default='./dataset/', type=str, help='path to dataset')
parser.add_argument('--distill', default=None, type=str, help='use "dynamic" for robust training')
parser.add_argument('--distill_mode', type=str, default='fine-gmm', choices=['kmeans','fine-kmeans','fine-gmm'], help='mode for distillation kmeans or eigen.')
parser.add_argument('--refinement', action='store_true', help='use refined label if in teacher_idx')
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = '%s,%s'%(args.gpuid1,args.gpuid2)
random.seed(args.seed)
cuda1 = torch.device('cuda:0')
cuda2 = torch.device('cuda:1')
# Training
def train(epoch,net,net2,optimizer,labeled_trainloader,unlabeled_trainloader,device,whichnet):
criterion = SemiLoss()
net.train()
net2.eval() #fix one network and train the other
unlabeled_train_iter = iter(unlabeled_trainloader)
num_iter = (len(labeled_trainloader.dataset)//args.batch_size)+1
for batch_idx, (inputs_x, inputs_x2, labels_x, w_x) in enumerate(labeled_trainloader):
try:
inputs_u, inputs_u2 = unlabeled_train_iter.next()
except:
unlabeled_train_iter = iter(unlabeled_trainloader)
inputs_u, inputs_u2 = unlabeled_train_iter.next()
batch_size = inputs_x.size(0)
# Transform label to one-hot
labels_x = torch.zeros(batch_size, args.num_class).scatter_(1, labels_x.view(-1,1), 1)
w_x = w_x.view(-1,1).type(torch.FloatTensor)
inputs_x, inputs_x2, labels_x, w_x = inputs_x.to(device,non_blocking=True), inputs_x2.to(device,non_blocking=True), labels_x.to(device,non_blocking=True), w_x.to(device,non_blocking=True)
inputs_u, inputs_u2 = inputs_u.to(device), inputs_u2.to(device)
with torch.no_grad():
# label co-guessing of unlabeled samples
outputs_u11 = net(inputs_u)
outputs_u12 = net(inputs_u2)
outputs_u21 = net2(inputs_u)
outputs_u22 = net2(inputs_u2)
pu = (torch.softmax(outputs_u11, dim=1) + torch.softmax(outputs_u12, dim=1) + torch.softmax(outputs_u21, dim=1) + torch.softmax(outputs_u22, dim=1)) / 4
ptu = pu**(1/args.T) # temparature sharpening
targets_u = ptu / ptu.sum(dim=1, keepdim=True) # normalize
targets_u = targets_u.detach()
# label refinement of labeled samples
outputs_x = net(inputs_x)
outputs_x2 = net(inputs_x2)
px = (torch.softmax(outputs_x, dim=1) + torch.softmax(outputs_x2, dim=1)) / 2
px = w_x*labels_x + (1-w_x)*px
ptx = px**(1/args.T) # temparature sharpening
targets_x = ptx / ptx.sum(dim=1, keepdim=True) # normalize
targets_x = targets_x.detach()
# mixmatch
l = np.random.beta(args.alpha, args.alpha)
l = max(l, 1-l)
all_inputs = torch.cat([inputs_x, inputs_x2, inputs_u, inputs_u2], dim=0)
all_targets = torch.cat([targets_x, targets_x, targets_u, targets_u], dim=0)
idx = torch.randperm(all_inputs.size(0))
input_a, input_b = all_inputs, all_inputs[idx]
target_a, target_b = all_targets, all_targets[idx]
mixed_input = l * input_a[:batch_size*2] + (1 - l) * input_b[:batch_size*2]
mixed_target = l * target_a[:batch_size*2] + (1 - l) * target_b[:batch_size*2]
logits = net(mixed_input)
Lx = -torch.mean(torch.sum(F.log_softmax(logits, dim=1) * mixed_target, dim=1))
prior = torch.ones(args.num_class)/args.num_class
prior = prior.to(device)
pred_mean = torch.softmax(logits, dim=1).mean(0)
penalty = torch.sum(prior*torch.log(prior/pred_mean))
loss = Lx + penalty
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
sys.stdout.write('\n')
sys.stdout.write('%s |%s Epoch [%3d/%3d] Iter[%4d/%4d]\t Labeled loss: %.2f'
%(args.id, whichnet, epoch, args.num_epochs, batch_idx+1, num_iter, Lx.item()))
sys.stdout.flush()
def warmup(epoch,net,optimizer,dataloader,device,whichnet):
CEloss = nn.CrossEntropyLoss()
acc_meter = torchnet.meter.ClassErrorMeter(topk=[1,5], accuracy=True)
net.train()
num_iter = (len(dataloader.dataset)//dataloader.batch_size)+1
for batch_idx, (inputs, labels, path) in enumerate(dataloader):
inputs, labels = inputs.to(device), labels.to(device,non_blocking=True)
optimizer.zero_grad()
outputs = net(inputs)
loss = CEloss(outputs, labels)
#penalty = conf_penalty(outputs)
L = loss #+ penalty
L.backward()
optimizer.step()
sys.stdout.write('\n')
sys.stdout.write('%s |%s Epoch [%3d/%3d] Iter[%4d/%4d]\t CE-loss: %.4f'
%(args.id, whichnet, epoch, args.num_epochs, batch_idx+1, num_iter, loss.item()))
sys.stdout.flush()
def test(epoch,net1,net2,test_loader,device,queue):
acc_meter = torchnet.meter.ClassErrorMeter(topk=[1,5], accuracy=True)
acc_meter.reset()
net1.eval()
net2.eval()
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs, targets = inputs.to(device), targets.to(device,non_blocking=True)
outputs1 = net1(inputs)
outputs2 = net2(inputs)
outputs = outputs1+outputs2
_, predicted = torch.max(outputs, 1)
acc_meter.add(outputs,targets)
accs = acc_meter.value()
queue.put(accs)
def eval_train(eval_loader,model,device,whichnet,queue):
CE = nn.CrossEntropyLoss(reduction='none')
model.eval()
num_iter = (len(eval_loader.dataset)//eval_loader.batch_size)+1
losses = torch.zeros(len(eval_loader.dataset))
with torch.no_grad():
for batch_idx, (inputs, targets, index) in enumerate(eval_loader):
inputs, targets = inputs.to(device), targets.to(device,non_blocking=True)
outputs = model(inputs)
loss = CE(outputs, targets)
for b in range(inputs.size(0)):
losses[index[b]]=loss[b]
sys.stdout.write('\n')
sys.stdout.write('|%s Evaluating loss Iter[%3d/%3d]\t' %(whichnet,batch_idx,num_iter))
sys.stdout.flush()
losses = (losses-losses.min())/(losses.max()-losses.min())
# fit a two-component GMM to the loss
input_loss = losses.reshape(-1,1)
gmm = GaussianMixture(n_components=2,max_iter=10,tol=1e-2,reg_covar=1e-3)
gmm.fit(input_loss)
prob = gmm.predict_proba(input_loss)
prob = prob[:,gmm.means_.argmin()]
queue.put(prob)
def linear_rampup(current, warm_up, rampup_length=16):
current = np.clip((current-warm_up) / rampup_length, 0.0, 1.0)
return args.lambda_u*float(current)
class SemiLoss(object):
def __call__(self, outputs_x, targets_x, outputs_u, targets_u, epoch, warm_up):
probs_u = torch.softmax(outputs_u, dim=1)
Lx = -torch.mean(torch.sum(F.log_softmax(outputs_x, dim=1) * targets_x, dim=1))
Lu = torch.mean((probs_u - targets_u)**2)
return Lx, Lu, linear_rampup(epoch,warm_up)
class NegEntropy(object):
def __call__(self,outputs):
probs = torch.softmax(outputs, dim=1)
return torch.mean(torch.sum(probs.log()*probs, dim=1))
def create_model(device):
model = InceptionResNetV2(num_classes=args.num_class)
model = model.to(device)
return model
def get_singular_vector(features, labels):
'''
To get top1 sigular vector in class-wise manner by using SVD of hidden feature vectors
features: hidden feature vectors of data (numpy)
labels: correspoding label list
'''
singular_vector_dict = {}
with tqdm(total=len(np.unique(labels))) as pbar:
for index in np.unique(labels):
_, _, v = np.linalg.svd(features[labels==index])
singular_vector_dict[index] = v[0]
pbar.update(1)
return singular_vector_dict
def get_features(model, dataloader, device):
'''
Concatenate the hidden features and corresponding labels
'''
labels = np.empty((0,))
model.eval()
model.to(device)
paths = []
with tqdm(dataloader) as progress:
for batch_idx, (data, label, path) in enumerate(progress):
data, label = data.to(device), label.long()
feature = model.features(data)
feature = model.avgpool_1a(feature)
feature = feature.view(feature.size(0), -1)
for b in range(data.size(0)):
paths.append(path[b])
labels = np.concatenate((labels, label.cpu()))
if batch_idx == 0:
features = feature.detach().cpu()
else:
features = np.concatenate((features, feature.detach().cpu()), axis=0)
return features, labels, paths
def get_score(singular_vector_dict, features, labels, normalization=True):
'''
Calculate the score providing the degree of showing whether the data is clean or not.
'''
if normalization:
scores = [np.abs(np.inner(singular_vector_dict[labels[indx]], feat/np.linalg.norm(feat))) for indx, feat in enumerate(tqdm(features))]
else:
scores = [np.abs(np.inner(singular_vector_dict[labels[indx]], feat)) for indx, feat in enumerate(tqdm(features))]
return np.array(scores)
def fit_mixture(scores, labels, p_threshold=0.5):
'''
Assume the distribution of scores: bimodal gaussian mixture model
return clean labels
that belongs to the clean cluster by fitting the score distribution to GMM
'''
clean_labels = []
indexes = np.array(range(len(scores)))
probs = {}
for cls in np.unique(labels):
cls_index = indexes[labels==cls]
feats = scores[labels==cls]
feats_ = np.ravel(feats).astype(np.float).reshape(-1, 1)
gmm = GaussianMixture(n_components=2, covariance_type='full', tol=1e-6, max_iter=10)
gmm.fit(feats_)
prob = gmm.predict_proba(feats_)
prob = prob[:,gmm.means_.argmax()]
for i in range(len(cls_index)):
probs[cls_index[i]] = prob[i]
# weights, means, covars = g.weights_, g.means_, g.covariances_
# # boundary? QDA!
# a, b = (1/2) * ((1/covars[0]) - (1/covars[1])), -(means[0]/covars[0]) + (means[1]/covars[1])
# c = (1/2) * ((np.square(means[0])/covars[0]) - (np.square(means[1])/covars[1]))
# c -= np.log((weights[0])/np.sqrt(2*np.pi*covars[0]))
# c += np.log((weights[1])/np.sqrt(2*np.pi*covars[1]))
# d = b**2 - 4*a*c
# bound = estimate_purity(feats, means, covars, weights)
clean_labels += [cls_index[clean_idx] for clean_idx in range(len(cls_index)) if prob[clean_idx] > p_threshold]
return np.array(clean_labels, dtype=np.int64), probs
def fine(current_features, current_labels, fit = 'kmeans', prev_features=None, prev_labels=None, p_threshold=0.7):
'''
prev_features, prev_labels: data from the previous round
current_features, current_labels: current round's data
return clean labels
if you insert the prev_features and prev_labels to None,
the algorthm divides the data based on the current labels and current features
'''
if (prev_features != None) and (prev_labels != None):
singular_vector_dict = get_singular_vector(prev_features, prev_labels)
else:
singular_vector_dict = get_singular_vector(current_features, current_labels)
scores = get_score(singular_vector_dict, features = current_features, labels = current_labels)
if 'kmeans' in fit:
clean_labels = cleansing(scores, current_labels)
probs = None
elif 'gmm' in fit:
# fit a two-component GMM to the loss
clean_labels, probs = fit_mixture(scores, current_labels, p_threshold)
else:
raise NotImplemented
return clean_labels, probs
def cleansing(scores, labels):
'''
Assume the distribution of scores: bimodal spherical distribution.
return clean labels
that belongs to the clean cluster made by the KMeans algorithm
'''
indexes = np.array(range(len(scores)))
clean_labels = []
for cls in np.unique(labels):
cls_index = indexes[labels==cls]
kmeans = cluster.KMeans(n_clusters=2, random_state=0).fit(scores[cls_index].reshape(-1, 1))
if np.mean(scores[cls_index][kmeans.labels_==0]) < np.mean(scores[cls_index][kmeans.labels_==1]): kmeans.labels_ = 1 - kmeans.labels_
clean_labels += cls_index[kmeans.labels_ == 0].tolist()
return np.array(clean_labels, dtype=np.int64)
def extract_cleanidx(model, loader, device, mode='fine-kmeans', p_threshold=0.5):
model.eval()
for params in model.parameters(): params.requires_grad = False
# get teacher_idx
if 'fine' in mode:
features, labels, paths = get_features(model, loader, device)
teacher_idx, probs = fine(current_features=features, current_labels=labels, fit = mode, p_threshold=p_threshold)
else: # get teacher _idx via kmeans
teacher_idx = get_loss_list(model, loader)
probs = None
for params in model.parameters(): params.requires_grad = True
model.train()
teacher_idx = torch.tensor(teacher_idx)
return teacher_idx, probs, paths
if __name__ == "__main__":
mp.set_start_method('spawn')
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
stats_log=open('./checkpoint/%s'%(args.id)+'_stats.txt','w')
test_log=open('./checkpoint/%s'%(args.id)+'_acc.txt','w')
warm_up=-1
data_num = None
loader = dataloader.webvision_dataloader(batch_size=args.batch_size,num_class = args.num_class,num_workers=8,root_dir=args.data_path,log=stats_log)
print('| Building net')
net1 = create_model(cuda1)
net2 = create_model(cuda2)
net1_clone = create_model(cuda2)
net2_clone = create_model(cuda1)
cudnn.benchmark = True
optimizer1 = optim.SGD(net1.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
optimizer2 = optim.SGD(net2.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
#conf_penalty = NegEntropy()
web_valloader = loader.run('test')
imagenet_valloader = loader.run('imagenet')
for epoch in range(args.num_epochs+1):
lr=args.lr
if epoch >= 50:
lr /= 10
for param_group in optimizer1.param_groups:
param_group['lr'] = lr
for param_group in optimizer2.param_groups:
param_group['lr'] = lr
if epoch<warm_up:
warmup_trainloader1 = loader.run('warmup')
warmup_trainloader2 = loader.run('warmup')
p1 = mp.Process(target=warmup, args=(epoch,net1,optimizer1,warmup_trainloader1,cuda1,'net1'))
p2 = mp.Process(target=warmup, args=(epoch,net2,optimizer2,warmup_trainloader2,cuda2,'net2'))
p1.start()
p2.start()
else:
eval_loader = loader.run('eval_train')
teacher_idx_1, prob1_dict, paths1 = extract_cleanidx(net1, eval_loader, device=cuda1, mode=args.distill_mode, p_threshold=args.p_threshold)
print('----')
# mp.Process(target=extract_cleanidx, args=(net1, eval_loader,'fine-gmm',0.5))
# extract_cleanidx(net1, eval_loader, mode=args.distill_mode, p_threshold=args.p_threshold)
eval_loader = loader.run('eval_train')
teacher_idx_2, prob2_dict, paths2 = extract_cleanidx(net2, eval_loader, device=cuda2, mode=args.distill_mode, p_threshold=args.p_threshold)
# mp.Process(target=extract_cleanidx, args=(net2, eval_loader,'fine-gmm',0.5))
# extract_cleanidx(net2, eval_loader, mode=args.distill_mode, p_threshold=args.p_threshold)
if data_num == None:
data_num = len(prob1_dict.keys())
pred1, pred2 = np.zeros(data_num, dtype=bool), np.zeros(data_num, dtype=bool)
prob1, prob2 = np.zeros(data_num), np.zeros(data_num)
for index in teacher_idx_1:
pred1[index] = True
for index in teacher_idx_2:
pred2[index] = True
for i in range(data_num):
prob1[i] = prob1_dict[i]
prob2[i] = prob2_dict[i]
labeled_trainloader1, unlabeled_trainloader1 = loader.run('train',pred2,prob2) # co-divide
labeled_trainloader2, unlabeled_trainloader2 = loader.run('train',pred1,prob1) # co-divide
p1 = mp.Process(target=train, args=(epoch,net1,net2_clone,optimizer1,labeled_trainloader1, unlabeled_trainloader1,cuda1,'net1'))
p2 = mp.Process(target=train, args=(epoch,net2,net1_clone,optimizer2,labeled_trainloader2, unlabeled_trainloader2,cuda2,'net2'))
p1.start()
p2.start()
p1.join()
p2.join()
net1_clone.load_state_dict(net1.state_dict())
net2_clone.load_state_dict(net2.state_dict())
q1 = mp.Queue()
q2 = mp.Queue()
p1 = mp.Process(target=test, args=(epoch,net1,net2_clone,web_valloader,cuda1,q1))
p2 = mp.Process(target=test, args=(epoch,net1_clone,net2,imagenet_valloader,cuda2,q2))
p1.start()
p2.start()
web_acc = q1.get()
imagenet_acc = q2.get()
p1.join()
p2.join()
print("\n| Test Epoch #%d\t WebVision Acc: %.2f%% (%.2f%%) \t ImageNet Acc: %.2f%% (%.2f%%)\n"%(epoch,web_acc[0],web_acc[1],imagenet_acc[0],imagenet_acc[1]))
test_log.write('Epoch:%d \t WebVision Acc: %.2f%% (%.2f%%) \t ImageNet Acc: %.2f%% (%.2f%%)\n'%(epoch,web_acc[0],web_acc[1],imagenet_acc[0],imagenet_acc[1]))
test_log.flush()
eval_loader1 = loader.run('eval_train')
eval_loader2 = loader.run('eval_train')
q1 = mp.Queue()
q2 = mp.Queue()
p1 = mp.Process(target=eval_train, args=(eval_loader1,net1,cuda1,'net1',q1))
p2 = mp.Process(target=eval_train, args=(eval_loader2,net2,cuda2,'net2',q2))
p1.start()
p2.start()
prob1 = q1.get()
prob2 = q2.get()
p1.join()
p2.join()