You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
i replace ".WAV" to wav, but it didn't work. When i run the train1.py, it stop in there,, what's more, when i use the command of "top" in ubuntu, i found the state of this program is "S", I din't know how to solve this problem.Can anyone help me ? Thanks a lot!
#5
Open
AliceSky opened this issue
Apr 7, 2019
· 1 comment
xxt@alice:~/vc_program/cross_vc$ python train1.py
Training Graph loaded
2019-04-07 11:25:19.617084: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2019-04-07 11:25:19.617106: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2019-04-07 11:25:19.617112: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2019-04-07 11:25:19.617116: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2019-04-07 11:25:19.617120: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
2019-04-07 11:25:19.803318: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:893] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-04-07 11:25:19.803774: I tensorflow/core/common_runtime/gpu/gpu_device.cc:955] Found device 0 with properties:
name: GeForce GT 730
major: 3 minor: 5 memoryClockRate (GHz) 0.9015
pciBusID 0000:01:00.0
Total memory: 978.75MiB
Free memory: 772.50MiB
2019-04-07 11:25:19.803806: I tensorflow/core/common_runtime/gpu/gpu_device.cc:976] DMA: 0
2019-04-07 11:25:19.803818: I tensorflow/core/common_runtime/gpu/gpu_device.cc:986] 0: Y
2019-04-07 11:25:19.803835: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GT 730, pci bus id: 0000:01:00.0)
net1/conv1d_1/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_1/conv1d/kernel (DT_FLOAT) [3,2048,128]
net1/conv1d_1/conv1d_1/beta (DT_FLOAT) [128]
net1/conv1d_1/conv1d_1/gamma (DT_FLOAT) [128]
net1/conv1d_2/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_2/conv1d/kernel (DT_FLOAT) [3,128,128]
net1/conv1d_2/conv1d_2/beta (DT_FLOAT) [128]
net1/conv1d_2/conv1d_2/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_0/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_0/conv1d/kernel (DT_FLOAT) [1,128,128]
net1/conv1d_banks/num_0/num_0/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_0/num_0/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_1/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_1/conv1d/kernel (DT_FLOAT) [2,128,128]
net1/conv1d_banks/num_1/num_1/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_1/num_1/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_10/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_10/conv1d/kernel (DT_FLOAT) [11,128,128]
net1/conv1d_banks/num_10/num_10/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_10/num_10/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_11/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_11/conv1d/kernel (DT_FLOAT) [12,128,128]
net1/conv1d_banks/num_11/num_11/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_11/num_11/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_12/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_12/conv1d/kernel (DT_FLOAT) [13,128,128]
net1/conv1d_banks/num_12/num_12/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_12/num_12/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_13/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_13/conv1d/kernel (DT_FLOAT) [14,128,128]
net1/conv1d_banks/num_13/num_13/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_13/num_13/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_14/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_14/conv1d/kernel (DT_FLOAT) [15,128,128]
net1/conv1d_banks/num_14/num_14/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_14/num_14/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_15/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_15/conv1d/kernel (DT_FLOAT) [16,128,128]
net1/conv1d_banks/num_15/num_15/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_15/num_15/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_2/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_2/conv1d/kernel (DT_FLOAT) [3,128,128]
net1/conv1d_banks/num_2/num_2/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_2/num_2/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_3/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_3/conv1d/kernel (DT_FLOAT) [4,128,128]
net1/conv1d_banks/num_3/num_3/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_3/num_3/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_4/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_4/conv1d/kernel (DT_FLOAT) [5,128,128]
net1/conv1d_banks/num_4/num_4/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_4/num_4/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_5/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_5/conv1d/kernel (DT_FLOAT) [6,128,128]
net1/conv1d_banks/num_5/num_5/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_5/num_5/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_6/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_6/conv1d/kernel (DT_FLOAT) [7,128,128]
net1/conv1d_banks/num_6/num_6/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_6/num_6/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_7/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_7/conv1d/kernel (DT_FLOAT) [8,128,128]
net1/conv1d_banks/num_7/num_7/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_7/num_7/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_8/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_8/conv1d/kernel (DT_FLOAT) [9,128,128]
net1/conv1d_banks/num_8/num_8/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_8/num_8/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_9/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_9/conv1d/kernel (DT_FLOAT) [10,128,128]
net1/conv1d_banks/num_9/num_9/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_9/num_9/gamma (DT_FLOAT) [128]
net1/dense/bias (DT_FLOAT) [128]
net1/dense/kernel (DT_FLOAT) [128,128]
net1/dense_1/bias (DT_FLOAT) [161]
net1/dense_1/kernel (DT_FLOAT) [256,161]
net1/gru/bidirectional_rnn/bw/gru_cell/candidate/bias (DT_FLOAT) [128]
net1/gru/bidirectional_rnn/bw/gru_cell/candidate/kernel (DT_FLOAT) [256,128]
net1/gru/bidirectional_rnn/bw/gru_cell/gates/bias (DT_FLOAT) [256]
net1/gru/bidirectional_rnn/bw/gru_cell/gates/kernel (DT_FLOAT) [256,256]
net1/gru/bidirectional_rnn/fw/gru_cell/candidate/bias (DT_FLOAT) [128]
net1/gru/bidirectional_rnn/fw/gru_cell/candidate/kernel (DT_FLOAT) [256,128]
net1/gru/bidirectional_rnn/fw/gru_cell/gates/bias (DT_FLOAT) [256]
net1/gru/bidirectional_rnn/fw/gru_cell/gates/kernel (DT_FLOAT) [256,256]
net1/highwaynet_0/dense1/bias (DT_FLOAT) [128]
net1/highwaynet_0/dense1/kernel (DT_FLOAT) [128,128]
net1/highwaynet_0/dense2/bias (DT_FLOAT) [128]
net1/highwaynet_0/dense2/kernel (DT_FLOAT) [128,128]
net1/highwaynet_1/dense1/bias (DT_FLOAT) [128]
net1/highwaynet_1/dense1/kernel (DT_FLOAT) [128,128]
net1/highwaynet_1/dense2/bias (DT_FLOAT) [128]
net1/highwaynet_1/dense2/kernel (DT_FLOAT) [128,128]
net1/highwaynet_2/dense1/bias (DT_FLOAT) [128]
net1/highwaynet_2/dense1/kernel (DT_FLOAT) [128,128]
net1/highwaynet_2/dense2/bias (DT_FLOAT) [128]
net1/highwaynet_2/dense2/kernel (DT_FLOAT) [128,128]
net1/highwaynet_3/dense1/bias (DT_FLOAT) [128]
net1/highwaynet_3/dense1/kernel (DT_FLOAT) [128,128]
net1/highwaynet_3/dense2/bias (DT_FLOAT) [128]
net1/highwaynet_3/dense2/kernel (DT_FLOAT) [128,128]
net1/prenet/dense1/bias (DT_FLOAT) [256]
net1/prenet/dense1/kernel (DT_FLOAT) [40,256]
net1/prenet/dense2/bias (DT_FLOAT) [128]
net1/prenet/dense2/kernel (DT_FLOAT) [256,128]
training/global_step (DT_INT32) []
0%| | 0/195 [00:00<?, ?b/s]
The text was updated successfully, but these errors were encountered: