Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

i replace ".WAV" to wav, but it didn't work. When i run the train1.py, it stop in there,, what's more, when i use the command of "top" in ubuntu, i found the state of this program is "S", I din't know how to solve this problem.Can anyone help me ? Thanks a lot! #5

Open
AliceSky opened this issue Apr 7, 2019 · 1 comment

Comments

@AliceSky
Copy link

AliceSky commented Apr 7, 2019

xxt@alice:~/vc_program/cross_vc$ python train1.py
Training Graph loaded
2019-04-07 11:25:19.617084: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2019-04-07 11:25:19.617106: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2019-04-07 11:25:19.617112: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2019-04-07 11:25:19.617116: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2019-04-07 11:25:19.617120: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
2019-04-07 11:25:19.803318: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:893] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-04-07 11:25:19.803774: I tensorflow/core/common_runtime/gpu/gpu_device.cc:955] Found device 0 with properties:
name: GeForce GT 730
major: 3 minor: 5 memoryClockRate (GHz) 0.9015
pciBusID 0000:01:00.0
Total memory: 978.75MiB
Free memory: 772.50MiB
2019-04-07 11:25:19.803806: I tensorflow/core/common_runtime/gpu/gpu_device.cc:976] DMA: 0
2019-04-07 11:25:19.803818: I tensorflow/core/common_runtime/gpu/gpu_device.cc:986] 0: Y
2019-04-07 11:25:19.803835: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GT 730, pci bus id: 0000:01:00.0)
net1/conv1d_1/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_1/conv1d/kernel (DT_FLOAT) [3,2048,128]
net1/conv1d_1/conv1d_1/beta (DT_FLOAT) [128]
net1/conv1d_1/conv1d_1/gamma (DT_FLOAT) [128]
net1/conv1d_2/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_2/conv1d/kernel (DT_FLOAT) [3,128,128]
net1/conv1d_2/conv1d_2/beta (DT_FLOAT) [128]
net1/conv1d_2/conv1d_2/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_0/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_0/conv1d/kernel (DT_FLOAT) [1,128,128]
net1/conv1d_banks/num_0/num_0/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_0/num_0/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_1/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_1/conv1d/kernel (DT_FLOAT) [2,128,128]
net1/conv1d_banks/num_1/num_1/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_1/num_1/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_10/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_10/conv1d/kernel (DT_FLOAT) [11,128,128]
net1/conv1d_banks/num_10/num_10/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_10/num_10/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_11/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_11/conv1d/kernel (DT_FLOAT) [12,128,128]
net1/conv1d_banks/num_11/num_11/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_11/num_11/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_12/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_12/conv1d/kernel (DT_FLOAT) [13,128,128]
net1/conv1d_banks/num_12/num_12/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_12/num_12/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_13/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_13/conv1d/kernel (DT_FLOAT) [14,128,128]
net1/conv1d_banks/num_13/num_13/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_13/num_13/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_14/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_14/conv1d/kernel (DT_FLOAT) [15,128,128]
net1/conv1d_banks/num_14/num_14/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_14/num_14/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_15/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_15/conv1d/kernel (DT_FLOAT) [16,128,128]
net1/conv1d_banks/num_15/num_15/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_15/num_15/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_2/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_2/conv1d/kernel (DT_FLOAT) [3,128,128]
net1/conv1d_banks/num_2/num_2/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_2/num_2/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_3/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_3/conv1d/kernel (DT_FLOAT) [4,128,128]
net1/conv1d_banks/num_3/num_3/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_3/num_3/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_4/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_4/conv1d/kernel (DT_FLOAT) [5,128,128]
net1/conv1d_banks/num_4/num_4/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_4/num_4/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_5/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_5/conv1d/kernel (DT_FLOAT) [6,128,128]
net1/conv1d_banks/num_5/num_5/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_5/num_5/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_6/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_6/conv1d/kernel (DT_FLOAT) [7,128,128]
net1/conv1d_banks/num_6/num_6/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_6/num_6/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_7/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_7/conv1d/kernel (DT_FLOAT) [8,128,128]
net1/conv1d_banks/num_7/num_7/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_7/num_7/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_8/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_8/conv1d/kernel (DT_FLOAT) [9,128,128]
net1/conv1d_banks/num_8/num_8/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_8/num_8/gamma (DT_FLOAT) [128]
net1/conv1d_banks/num_9/conv1d/bias (DT_FLOAT) [128]
net1/conv1d_banks/num_9/conv1d/kernel (DT_FLOAT) [10,128,128]
net1/conv1d_banks/num_9/num_9/beta (DT_FLOAT) [128]
net1/conv1d_banks/num_9/num_9/gamma (DT_FLOAT) [128]
net1/dense/bias (DT_FLOAT) [128]
net1/dense/kernel (DT_FLOAT) [128,128]
net1/dense_1/bias (DT_FLOAT) [161]
net1/dense_1/kernel (DT_FLOAT) [256,161]
net1/gru/bidirectional_rnn/bw/gru_cell/candidate/bias (DT_FLOAT) [128]
net1/gru/bidirectional_rnn/bw/gru_cell/candidate/kernel (DT_FLOAT) [256,128]
net1/gru/bidirectional_rnn/bw/gru_cell/gates/bias (DT_FLOAT) [256]
net1/gru/bidirectional_rnn/bw/gru_cell/gates/kernel (DT_FLOAT) [256,256]
net1/gru/bidirectional_rnn/fw/gru_cell/candidate/bias (DT_FLOAT) [128]
net1/gru/bidirectional_rnn/fw/gru_cell/candidate/kernel (DT_FLOAT) [256,128]
net1/gru/bidirectional_rnn/fw/gru_cell/gates/bias (DT_FLOAT) [256]
net1/gru/bidirectional_rnn/fw/gru_cell/gates/kernel (DT_FLOAT) [256,256]
net1/highwaynet_0/dense1/bias (DT_FLOAT) [128]
net1/highwaynet_0/dense1/kernel (DT_FLOAT) [128,128]
net1/highwaynet_0/dense2/bias (DT_FLOAT) [128]
net1/highwaynet_0/dense2/kernel (DT_FLOAT) [128,128]
net1/highwaynet_1/dense1/bias (DT_FLOAT) [128]
net1/highwaynet_1/dense1/kernel (DT_FLOAT) [128,128]
net1/highwaynet_1/dense2/bias (DT_FLOAT) [128]
net1/highwaynet_1/dense2/kernel (DT_FLOAT) [128,128]
net1/highwaynet_2/dense1/bias (DT_FLOAT) [128]
net1/highwaynet_2/dense1/kernel (DT_FLOAT) [128,128]
net1/highwaynet_2/dense2/bias (DT_FLOAT) [128]
net1/highwaynet_2/dense2/kernel (DT_FLOAT) [128,128]
net1/highwaynet_3/dense1/bias (DT_FLOAT) [128]
net1/highwaynet_3/dense1/kernel (DT_FLOAT) [128,128]
net1/highwaynet_3/dense2/bias (DT_FLOAT) [128]
net1/highwaynet_3/dense2/kernel (DT_FLOAT) [128,128]
net1/prenet/dense1/bias (DT_FLOAT) [256]
net1/prenet/dense1/kernel (DT_FLOAT) [40,256]
net1/prenet/dense2/bias (DT_FLOAT) [128]
net1/prenet/dense2/kernel (DT_FLOAT) [256,128]
training/global_step (DT_INT32) []

0%| | 0/195 [00:00<?, ?b/s]

@zhaoxy0303
Copy link

Hello,did you solve this problem?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants