Currently this implementation supports llava-v1.5 variants, as well as llava-1.6 llava-v1.6 variants.
The pre-converted 7b and 13b models are available. For llava-1.6 a variety of prepared gguf models are available as well 7b-34b
After API is confirmed, more models will be supported / uploaded.
Build with cmake or run make llama-llava-cli
to build it.
After building, run: ./llama-llava-cli
to see the usage. For example:
./llama-llava-cli -m ../llava-v1.5-7b/ggml-model-f16.gguf --mmproj ../llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg
note: A lower temperature like 0.1 is recommended for better quality. add --temp 0.1
to the command to do so.
note: For GPU offloading ensure to use the -ngl
flag just like usual
- Clone a LLaVA and a CLIP model (available options). For example:
git clone https://huggingface.co/liuhaotian/llava-v1.5-7b
git clone https://huggingface.co/openai/clip-vit-large-patch14-336
- Install the required Python packages:
pip install -r examples/llava/requirements.txt
- Use
llava_surgery.py
to split the LLaVA model to LLaMA and multimodel projector constituents:
python ./examples/llava/llava_surgery.py -m ../llava-v1.5-7b
- Use
convert_image_encoder_to_gguf.py
to convert the LLaVA image encoder to GGUF:
python ./examples/llava/convert_image_encoder_to_gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
- Use
examples/convert_legacy_llama.py
to convert the LLaMA part of LLaVA to GGUF:
python ./examples/convert_legacy_llama.py ../llava-v1.5-7b --skip-unknown
Now both the LLaMA part and the image encoder are in the llava-v1.5-7b
directory.
- First clone a LLaVA 1.6 model:
git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
- Install the required Python packages:
pip install -r examples/llava/requirements.txt
- Use
llava_surgery_v2.py
which also supports llava-1.5 variants pytorch as well as safetensor models:
python examples/llava/llava_surgery_v2.py -C -m ../llava-v1.6-vicuna-7b/
- you will find a llava.projector and a llava.clip file in your model directory
- Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory:
mkdir vit
cp ../llava-v1.6-vicuna-7b/llava.clip vit/pytorch_model.bin
cp ../llava-v1.6-vicuna-7b/llava.projector vit/
curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.json -o vit/config.json
- Create the visual gguf model:
python ./examples/llava/convert_image_encoder_to_gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
- Then convert the model to gguf format:
python ./examples/convert_legacy_llama.py ../llava-v1.6-vicuna-7b/ --skip-unknown
- And finally we can run the llava cli using the 1.6 model version:
./llama-llava-cli -m ../llava-v1.6-vicuna-7b/ggml-model-f16.gguf --mmproj vit/mmproj-model-f16.gguf --image some-image.jpg -c 4096
note llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096) note llava-1.6 greatly benefits from batched prompt processing (defaults work)
llava-1.5 models all use the same vicuna prompt, here you can just add your image question like -p "Provide a full description."
For llava-1.5 models which are not vicuna (mistral and Yi) you need to adapt system prompt as well as user prompt, for this purpose llava-cli has a basic templating system:
For Mistral and using llava-cli binary:
Add this: -p "<image>\nUSER:\nProvide a full description.\nASSISTANT:\n"
The mistral template for llava-1.6 seems to be no system print and a USER/ASSISTANT role
For the 34B this should work:
Add this: -e -p <|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nProvide a full description.<|im_end|><|im_start|>assistant\n
When running llava-cli you will see a visual information right before the prompt is being processed:
Llava-1.5:
encode_image_with_clip: image embedding created: 576 tokens
Llava-1.6 (anything above 576):
encode_image_with_clip: image embedding created: 2880 tokens
Alternatively just pay notice to how many "tokens" have been used for your prompt, it will also show 1000+ tokens for llava-1.6
- Support non-CPU backend for the image encoding part.
- Support different sampling methods.
- Support more model variants.