This repository was archived by the owner on Mar 10, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathParameterEstimation.cpp
221 lines (188 loc) · 8.43 KB
/
ParameterEstimation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
/*
*
* Copyright (c) 2017, Lawrence Livermore National Security, LLC.
* Produced at the Lawrence Livermore National Laboratory.
* Written by Slaven Peles <[email protected]>.
* LLNL-CODE-718378.
* All rights reserved.
*
* This file is part of GridKit™. For details, see github.com/LLNL/GridKit
* Please also read the LICENSE file.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the disclaimer below.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the disclaimer (as noted below) in the
* documentation and/or other materials provided with the distribution.
* - Neither the name of the LLNS/LLNL nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL LAWRENCE LIVERMORE NATIONAL
* SECURITY, LLC, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISINGIN ANY
* WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* Lawrence Livermore National Laboratory is operated by Lawrence Livermore
* National Security, LLC, for the U.S. Department of Energy, National
* Nuclear Security Administration under Contract DE-AC52-07NA27344.
*
* This document was prepared as an account of work sponsored by an agency
* of the United States government. Neither the United States government nor
* Lawrence Livermore National Security, LLC, nor any of their employees
* makes any warranty, expressed or implied, or assumes any legal liability
* or responsibility for the accuracy, completeness, or usefulness of any
* information, apparatus, product, or process disclosed, or represents that
* its use would not infringe privately owned rights. Reference herein to
* any specific commercial product, process, or service by trade name,
* trademark, manufacturer, or otherwise does not necessarily constitute or
* imply its endorsement, recommendation, or favoring by the United States
* government or Lawrence Livermore National Security, LLC. The views and
* opinions of authors expressed herein do not necessarily state or reflect
* those of the United States government or Lawrence Livermore National
* Security, LLC, and shall not be used for advertising or product
* endorsement purposes.
*
*/
#include <iostream>
#include <iomanip>
#include <ComponentLib/Bus/BusSlack.hpp>
#include <ComponentLib/Generator4Param/Generator4Param.hpp>
#include <SystemModel.hpp>
#include <Solver/Dynamic/Ida.hpp>
#include <IpIpoptApplication.hpp>
#include <IpSolveStatistics.hpp>
#include <Solver/Optimization/DynamicObjective.hpp>
#include <Solver/Optimization/DynamicConstraint.hpp>
#include <Utilities/FileIO.hpp>
#include <Utilities/Testing.hpp>
int main(int argc, char** argv)
{
using namespace ModelLib;
using namespace AnalysisManager::Sundials;
using namespace AnalysisManager;
using namespace GridKit::Testing;
// Create an infinite bus
BaseBus<double, size_t>* bus = new BusSlack<double, size_t>(1.0, 0.0);
// Attach a generator to that bus
Generator4Param<double, size_t>* gen = new Generator4Param<double, size_t>(bus);
// Create a system model
SystemModel<double, size_t>* model = new SystemModel<double, size_t>();
model->addBus(bus);
model->addComponent(gen);
// allocate model components
model->allocate();
// Create numerical integrator and configure it for the generator model
Ida<double, size_t>* idas = new Ida<double, size_t>(model);
const std::string input_data = (argc == 2) ? argv[1] : "lookup_table.dat";
double t_init = -1.0;
double t_final = -1.0;
GridKit::setLookupTable(gen->getLookupTable(), input_data, t_init, t_final);
std::cout << "Performing parameter estimation with respect to data\nfrom "
<< "t_init = " << t_init << " to t_final = " << t_final << "\n";
// setup simulation
idas->configureSimulation();
idas->configureAdjoint();
idas->getDefaultInitialCondition();
idas->initializeSimulation(t_init);
idas->configureQuadrature();
idas->initializeQuadrature();
double t_fault = 0.1;
double t_clear = 0.1;
idas->runSimulation(t_fault);
idas->saveInitialCondition();
// create initial condition after a fault
{
idas->getSavedInitialCondition();
idas->initializeSimulation(t_init);
gen->V() = 0.0;
idas->runSimulation(t_clear, 20);
gen->V() = 1.0;
idas->saveInitialCondition();
}
// Set integration time for dynamic constrained optimization
idas->setIntegrationTime(t_init, t_final, 100);
// Guess value of inertia coefficient
model->param()[0] = 3.0;
// Create an instance of the IpoptApplication
Ipopt::SmartPtr<Ipopt::IpoptApplication> ipoptApp = IpoptApplicationFactory();
// Set solver tolerance
const double tol = 1e-5;
// Initialize the IpoptApplication and process the options
Ipopt::ApplicationReturnStatus status;
status = ipoptApp->Initialize();
if (status != Ipopt::Solve_Succeeded)
{
std::cout << "\n\n*** Initialization failed! ***\n\n";
return (int) status;
}
// Configure Ipopt application
ipoptApp->Options()->SetStringValue("hessian_approximation", "limited-memory");
ipoptApp->Options()->SetNumericValue("tol", tol);
ipoptApp->Options()->SetIntegerValue("print_level", 0);
// Create dynamic objective interface to Ipopt solver
Ipopt::SmartPtr<Ipopt::TNLP> ipoptDynamicObjectiveInterface =
new IpoptInterface::DynamicObjective<double, size_t>(idas);
// Solve the problem
status = ipoptApp->OptimizeTNLP(ipoptDynamicObjectiveInterface);
std::cout << "\n\nProblem formulated as dynamic objective optimiztion ...\n";
if (status == Ipopt::Solve_Succeeded)
{
// Print result
std::cout << "\nSucess:\n The problem solved in "
<< ipoptApp->Statistics()->IterationCount() << " iterations!\n"
<< " Optimal value of H = " << model->param()[0] << "\n"
<< " The final value of the objective function G(H) = "
<< ipoptApp->Statistics()->FinalObjective() << "\n\n";
}
// Store dynamic objective optimization results
double* results = new double[model->size_opt()];
for(unsigned i=0; i <model->size_opt(); ++i)
{
results[i] = model->param()[i];
}
// Guess value of inertia coefficient
model->param()[0] = 3.0;
// Create dynamic constraint interface to Ipopt solver
Ipopt::SmartPtr<Ipopt::TNLP> ipoptDynamicConstraintInterface =
new IpoptInterface::DynamicConstraint<double, size_t>(idas);
// Solve the problem
status = ipoptApp->OptimizeTNLP(ipoptDynamicConstraintInterface);
std::cout << "\n\nProblem formulated as dynamic constraint optimiztion ...\n";
if (status == Ipopt::Solve_Succeeded)
{
// Print result
std::cout << "\nSucess:\n The problem solved in "
<< ipoptApp->Statistics()->IterationCount() << " iterations!\n"
<< " Optimal value of H = " << model->param()[0] << "\n"
<< " The final value of the objective function G(H) = "
<< ipoptApp->Statistics()->FinalObjective() << "\n\n";
}
// Compare results of the two optimization methods
int retval = 0;
for(unsigned i=0; i <model->size_opt(); ++i)
{
if(!isEqual(results[i], model->param()[i], 10*tol))
--retval;
}
if(retval < 0)
{
std::cout << "The two results differ beyond solver tolerance!\n";
}
delete [] results;
delete idas;
delete model;
return retval;
}