LEAP: Differentiable forward and backward projectors for AI/ML-driven computed tomography applications
Projector class is provided to enable PyTorch integeration. It is a wrapper class that uses Python LEAP API. This section describes the Python API functions.
forward project on CPU
back project on CPU
forward project on GPU
back project on GPU
print all current projection and image parameters
save all current parameters to a file
set GPU device id for forward and back projection operations. begin with 0.
set up cone beam projection parameters
set up parallel beam projection parameters
set up modular beam projection parameters
set up image volume dimension to be reconstructed
get image volume dimension
get projection data (sinogram) dimension
create a new parameter set, in addition to the default parameter set
remove all parameter sets in memory, the main default parameter set will not be removed.
forward project on CPU by cone beam geometry parameters
forward project on CPU by parallel beam geometry parameters
back project on CPU by cone beam geometry parameters
back project on CPU by parallel beam geometry parameters
forward project on GPU by cone beam geometry parameters
forward project on GPU by parallel beam geometry parameters
back project on GPU by cone beam geometry parameters
back project on GPU by parallel beam geometry parameters
The core backend of the LEAP library is written in C++ and CUDA. It is dynamically linked in the Python environment and used with the Python binding mechanism.