Skip to content

Latest commit

 

History

History
410 lines (342 loc) · 11.8 KB

binary_tree_traversal.md

File metadata and controls

410 lines (342 loc) · 11.8 KB
comments
true

二叉树遍历

非线性数据结构的遍历操作比线性数据结构更加复杂,往往需要使用搜索算法来实现。常见的二叉树遍历方式有层序遍历、前序遍历、中序遍历、后序遍历。

层序遍历

「层序遍历 Hierarchical-Order Traversal」从顶至底、一层一层地遍历二叉树,并在每层中按照从左到右的顺序访问结点。

层序遍历本质上是「广度优先搜索 Breadth-First Traversal」,其体现着一种“一圈一圈向外”的层进遍历方式。

binary_tree_bfs

Fig. 二叉树的层序遍历

广度优先遍历一般借助「队列」来实现。队列的规则是“先进先出”,广度优先遍历的规则是 ”一层层平推“ ,两者背后的思想是一致的。

=== "Java"

```java title="binary_tree_bfs.java"
/* 层序遍历 */
List<Integer> hierOrder(TreeNode root) {
    // 初始化队列,加入根结点
    Queue<TreeNode> queue = new LinkedList<>() {{ add(root); }};
    // 初始化一个列表,用于保存遍历序列
    List<Integer> list = new ArrayList<>();
    while (!queue.isEmpty()) {
        TreeNode node = queue.poll();  // 队列出队
        list.add(node.val);            // 保存结点值
        if (node.left != null)
            queue.offer(node.left);    // 左子结点入队
        if (node.right != null)
            queue.offer(node.right);   // 右子结点入队
    }
    return list;
}
```

=== "C++"

```cpp title="binary_tree_bfs.cpp"
/* 层序遍历 */
vector<int> hierOrder(TreeNode* root) {
    // 初始化队列,加入根结点
    queue<TreeNode*> queue;
    queue.push(root);
    // 初始化一个列表,用于保存遍历序列
    vector<int> vec;
    while (!queue.empty()) {
        TreeNode* node = queue.front();
        queue.pop();  // 队列出队
        vec.push_back(node->val);            // 保存结点
        if (node->left != nullptr)
            queue.push(node->left);    // 左子结点入队
        if (node->right != nullptr)
            queue.push(node->right);   // 右子结点入队
    }
    return vec;
}
```

=== "Python"

```python title="binary_tree_bfs.py"

```

=== "Go"

```go title="binary_tree_bfs.go"
/* 层序遍历 */
func levelOrder(root *TreeNode) []int {
    // 初始化队列,加入根结点
    queue := list.New()
    queue.PushBack(root)
    // 初始化一个切片,用于保存遍历序列
    nums := make([]int, 0)
    for queue.Len() > 0 {
        // poll
        node := queue.Remove(queue.Front()).(*TreeNode)
        // 保存结点
        nums = append(nums, node.Val)
        if node.Left != nil {
            // 左子结点入队
            queue.PushBack(node.Left)
        }
        if node.Right != nil {
            // 右子结点入队
            queue.PushBack(node.Right)
        }
    }
    return nums
}
```

=== "JavaScript"

```js title="binary_tree_bfs.js"
/* 层序遍历 */
function hierOrder(root) {
    // 初始化队列,加入根结点
    let queue = [root];
    // 初始化一个列表,用于保存遍历序列
    let list = [];
    while (queue.length) {
        let node = queue.shift();  // 队列出队
        list.push(node.val);          // 保存结点
        if (node.left)
            queue.push(node.left);    // 左子结点入队
        if (node.right)
            queue.push(node.right);   // 右子结点入队
    }
    return list;
}
```

=== "TypeScript"

```typescript title="binary_tree_bfs.ts"
/* 层序遍历 */
function hierOrder(root: TreeNode | null): number[] {
    // 初始化队列,加入根结点
    const queue = [root];
    // 初始化一个列表,用于保存遍历序列
    const list: number[] = [];
    while (queue.length) {
        let node = queue.shift() as TreeNode; // 队列出队
        list.push(node.val); // 保存结点
        if (node.left) {
            queue.push(node.left); // 左子结点入队
        }
        if (node.right) {
            queue.push(node.right); // 右子结点入队
        }
    }
    return list;
}
```

=== "C"

```c title="binary_tree_bfs.c"

```

=== "C#"

```csharp title="binary_tree_bfs.cs"
/* 层序遍历 */
public List<int?> hierOrder(TreeNode root)
{
    // 初始化队列,加入根结点
    Queue<TreeNode> queue = new();
    queue.Enqueue(root);
    // 初始化一个列表,用于保存遍历序列
    List<int> list = new();
    while (queue.Count != 0)
    {
        TreeNode node = queue.Dequeue(); // 队列出队
        list.Add(node.val);              // 保存结点值
        if (node.left != null)
            queue.Enqueue(node.left);    // 左子结点入队
        if (node.right != null)
            queue.Enqueue(node.right);   // 右子结点入队
    }
    return list;
}

```

前序、中序、后序遍历

相对地,前、中、后序遍历皆属于「深度优先遍历 Depth-First Traversal」,其体现着一种“先走到尽头,再回头继续”的回溯遍历方式。

如下图所示,左侧是深度优先遍历的的示意图,右上方是对应的递归实现代码。深度优先遍历就像是绕着整个二叉树的外围“走”一圈,走的过程中,在每个结点都会遇到三个位置,分别对应前序遍历、中序遍历、后序遍历。

binary_tree_dfs

Fig. 二叉树的前 / 中 / 后序遍历

位置 含义 此处访问结点时对应
橙色圆圈处 刚进入此结点,即将访问该结点的左子树 前序遍历 Pre-Order Traversal
蓝色圆圈处 已访问完左子树,即将访问右子树 中序遍历 In-Order Traversal
紫色圆圈处 已访问完左子树和右子树,即将返回 后序遍历 Post-Order Traversal

=== "Java"

```java title="binary_tree_dfs.java"
/* 前序遍历 */
void preOrder(TreeNode root) {
    if (root == null) return;
    // 访问优先级:根结点 -> 左子树 -> 右子树
    list.add(root.val);
    preOrder(root.left);
    preOrder(root.right);
}

/* 中序遍历 */
void inOrder(TreeNode root) {
    if (root == null) return;
    // 访问优先级:左子树 -> 根结点 -> 右子树
    inOrder(root.left);
    list.add(root.val);
    inOrder(root.right);
}

/* 后序遍历 */
void postOrder(TreeNode root) {
    if (root == null) return;
    // 访问优先级:左子树 -> 右子树 -> 根结点
    postOrder(root.left);
    postOrder(root.right);
    list.add(root.val);
}
```

=== "C++"

```cpp title="binary_tree_dfs.cpp"
/* 前序遍历 */
void preOrder(TreeNode* root) {
    if (root == nullptr) return;
    // 访问优先级:根结点 -> 左子树 -> 右子树
    vec.push_back(root->val);
    preOrder(root->left);
    preOrder(root->right);
}

/* 中序遍历 */
void inOrder(TreeNode* root) {
    if (root == nullptr) return;
    // 访问优先级:左子树 -> 根结点 -> 右子树
    inOrder(root->left);
    vec.push_back(root->val);
    inOrder(root->right);
}

/* 后序遍历 */
void postOrder(TreeNode* root) {
    if (root == nullptr) return;
    // 访问优先级:左子树 -> 右子树 -> 根结点
    postOrder(root->left);
    postOrder(root->right);
    vec.push_back(root->val);
}
```

=== "Python"

```python title="binary_tree_dfs.py"

```

=== "Go"

```go title="binary_tree_dfs.go"
/* 前序遍历 */
func preOrder(node *TreeNode) {
    if node == nil {
        return
    }
    // 访问优先级:根结点 -> 左子树 -> 右子树
    nums = append(nums, node.Val)
    preOrder(node.Left)
    preOrder(node.Right)
}

/* 中序遍历 */
func inOrder(node *TreeNode) {
    if node == nil {
        return
    }
    // 访问优先级:左子树 -> 根结点 -> 右子树
    inOrder(node.Left)
    nums = append(nums, node.Val)
    inOrder(node.Right)
}

/* 后序遍历 */
func postOrder(node *TreeNode) {
    if node == nil {
        return
    }
    // 访问优先级:左子树 -> 右子树 -> 根结点
    postOrder(node.Left)
    postOrder(node.Right)
    nums = append(nums, node.Val)
}
```

=== "JavaScript"

```js title="binary_tree_dfs.js"
/* 前序遍历 */
function preOrder(root){
    if (root === null) return;
    // 访问优先级:根结点 -> 左子树 -> 右子树
    list.push(root.val);
    preOrder(root.left);
    preOrder(root.right);
}

/* 中序遍历 */
function inOrder(root) {
    if (root === null) return;
    // 访问优先级:左子树 -> 根结点 -> 右子树
    inOrder(root.left);
    list.push(root.val);
    inOrder(root.right);
}

/* 后序遍历 */
function postOrder(root) {
    if (root === null) return;
    // 访问优先级:左子树 -> 右子树 -> 根结点
    postOrder(root.left);
    postOrder(root.right);
    list.push(root.val);
}
```

=== "TypeScript"

```typescript title="binary_tree_dfs.ts"
/* 前序遍历 */
function preOrder(root: TreeNode | null): void {
    if (root === null) {
        return;
    }
    // 访问优先级:根结点 -> 左子树 -> 右子树
    list.push(root.val);
    preOrder(root.left);
    preOrder(root.right);
}

/* 中序遍历 */
function inOrder(root: TreeNode | null): void {
    if (root === null) {
        return;
    }
    // 访问优先级:左子树 -> 根结点 -> 右子树
    inOrder(root.left);
    list.push(root.val);
    inOrder(root.right);
}

/* 后序遍历 */
function postOrder(root: TreeNode | null): void {
    if (root === null) {
        return;
    }
    // 访问优先级:左子树 -> 右子树 -> 根结点
    postOrder(root.left);
    postOrder(root.right);
    list.push(root.val);
}
```

=== "C"

```c title="binary_tree_dfs.c"

```

=== "C#"

```csharp title="binary_tree_dfs.cs"
/* 前序遍历 */
void preOrder(TreeNode? root)
{
    if (root == null) return;
    // 访问优先级:根结点 -> 左子树 -> 右子树
    list.Add(root.val);
    preOrder(root.left);
    preOrder(root.right);
}

/* 中序遍历 */
void inOrder(TreeNode? root)
{
    if (root == null) return;
    // 访问优先级:左子树 -> 根结点 -> 右子树
    inOrder(root.left);
    list.Add(root.val);
    inOrder(root.right);
}

/* 后序遍历 */
void postOrder(TreeNode? root)
{
    if (root == null) return;
    // 访问优先级:左子树 -> 右子树 -> 根结点
    postOrder(root.left);
    postOrder(root.right);
    list.Add(root.val);
}

```

!!! note

使用循环一样可以实现前、中、后序遍历,但代码相对繁琐,有兴趣的同学可以自行实现。