- Toolkit by theAIGuysCode
Python is required.
-
Clone this respository
git clone git clone https://github.com/EscVM/OIDv4_ToolKit.git
-
Install required packages with pip
pip install -r requirements.txt
-
Download 1800 images of Person with the following command.
python main.py downloader --classes Person --type_csv validation --limit 1800
Arguments
- --classes: Indicates the classes needed to be download
- --type_cvs: Indicates the dataset type
- --limit: Limit the number of dataset to be downloaded
The algorithm will take care to download all the necessary files and build the directory structure like this:
main_folder │ main.py │ └───OID │ file011.txt │ file012.txt │ └───csv_folder | │ class-descriptions-boxable.csv | │ validation-annotations-bbox.csv | └───Dataset | └─── train | └───Person | |000b65a36ad46f9e.jpg |000e1dd786c8e433.jpg |... └───Label | |000b65a36ad46f9e.txt |000e1dd786c8e433.txt |...
-
Run convert_annotations.py. This will generate .txt annotation files in proper format for custom object detection with YOLOv4. The text files are generated in folder with images.
python convert.annotations.py
-
Download the file and place in the OIDv4_toolKit parent directory
Link: oid_to_pascal_voc_xml.py
-
Run the following command
python oid_to_pascal_voc_xml.py
The script will create directory called To_PASCAL_XML in the Dataset Subdirectories. These directories contain the XML files.