Skip to content

Commit 75d6f37

Browse files
committed
📝 PCA主成分分析,数据降维
1 parent bc36249 commit 75d6f37

File tree

1 file changed

+5
-1
lines changed

1 file changed

+5
-1
lines changed

readme.md

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -969,7 +969,11 @@ def runKMeans(X,initial_centroids,max_iters,plot_process):
969969
![$$error{\kern 1pt} \;ratio = 1 - {{\sum\limits_{i = 1}^k {{S_{ii}}} } \over {\sum\limits_{i = 1}^n {{S_{ii}}} }} \le threshold$$](http://latex.codecogs.com/gif.latex?%5Cfn_cm%20%24%24error%7B%5Ckern%201pt%7D%20%5C%3Bratio%20%3D%201%20-%20%7B%7B%5Csum%5Climits_%7Bi%20%3D%201%7D%5Ek%20%7B%7BS_%7Bii%7D%7D%7D%20%7D%20%5Cover%20%7B%5Csum%5Climits_%7Bi%20%3D%201%7D%5En%20%7B%7BS_%7Bii%7D%7D%7D%20%7D%7D%20%5Cle%20threshold%24%24)
970970
- 可以一点点增加`K`尝试。
971971

972-
### 7、运行结果
972+
### 7、使用建议
973+
- 不要使用PCA去解决过拟合问题`Overfitting`,还是使用正则化的方法(如果保留了很高的差异性还是可以的)
974+
- 只有在原数据上有好的结果,但是运行很慢,才考虑使用PCA
975+
976+
### 8、运行结果
973977
- 2维数据降为1维
974978
- 要投影的方向
975979
![enter description here][44]

0 commit comments

Comments
 (0)