Teaching You How to Survive in the Lab (实验室求生指南)
硬件环境:笔记本电脑至少配备30系列的显卡
软件环境:双系统Ubuntu 20.04及以上 (ubuntu系统单独一个500G/1T固态硬盘),Cuda,Cudnn,Anaconda,FanQiang,游览器(Chrome),录屏软件(SimpleScreenRecoder)
掌握ROS基础知识!
掌握Python/Pytorch基本语法!
请通过CSDN,知乎,B站或相关论文建立以下概念的认知!
什么是卷积,池化,激活函数,全连接层,批归一化等常见网络元素?
什么是RNN,LSTM,GRU,Transformer,Mamba等常见网络基础模块?适用于什么任务场景?
常见的损失函数有哪些?哪些适合分类任务,哪些适合回归任务?
代码上如何实现数据处理,并行计算,网络搭建,优化器设置以及网络优化?
什么是二维/三维目标检测、跟踪、分割?什么是占据栅格预测 (OCC)?什么是基于环视BEV的目标检测?什么是NeRF (Neural Radiance Fields)和3D Gaussian Splatting?
跟李沐学AI Link
PyTorch深度学习快速入门教程 Link
请利用Mendeley文献工具分门别类管理文献,初期可以借助一些翻译器阅读文献,后期尽量避免(遇到不会的单词再去百度翻译); 重点阅读Abstract,Introduction和Method,对Related Work简要阅读,Experiment部分主要阅读表格数据、评价指标与常用数据集; 初期速度约为4-5小时一篇论文.
以下将提供环境感知相关领域的基础文章,请按顺序或者兴趣进行阅读,请注意在阅读过程中寻找同一任务文章之间的联系,例如:思想的继承与发展关系? 请对某一任务的相关论文进行集中阅读与总结,切勿各个任务论文交叉阅读.
(以下论文仅为基础知识,并非是目前最前沿的主流方向,因此需要快速掌握).
PointNet: Deep learning on point sets for 3D classification and segmentation [CVPR 2017]
PointNet ++ : Deep Hierarchical Feature Learning on Point Sets in a Metric Space [NIPS 2017]
PointMamba: A Simple State Space Model for Point Cloud Analysis [NIPS 2024]
SECOND: Sparsely Embedded Convolutional Detection [Sensors 2018]
PointPillars: Fast Encoders for Object Detection from Point Clouds [CVPR 2019]
PointRCNN: 3D object proposal generation and detection from point cloud [CVPR 2019]
Center-based 3D Object Detection and Tracking [CVPR 2021]
VoxelNeXt: Fully Sparse VoxelNet for 3D Object Detection and Tracking [CVPR 2023]
P2B: Point-to-box network for 3D object tracking in point clouds [CVPR 2020]
Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds [ICCV 2021]
PTTR: Relational 3D Point Cloud Object Tracking with Transformer [CVPR 2022]
Beyond 3D Siamese Tracking: A Motion-Centric Paradigm for 3D Single Object Tracking in Point Clouds [CVPR 2022]
TemporalLidarSeg: LiDAR-based Recurrent 3D Semantic Segmentation with Temporal Memory Alignment [3DV 2020]
Polarnet: An improved grid representation for online Lidar point clouds semantic segmentation [CVPR 2020]
CENet: Toward Concise and Efficient Lidar Semantic Segmentation for Autonomous Driving [ICME 2022]
RangeViT: Towards Vision Transformers for 3D Semantic Segmentation in Autonomous Driving [CVPR 2023]
RangeFormer: Rethinking Range View Representation for LiDAR Segmentation [ICCV 2023]