forked from USTC-Hackergame/hackergame2022-writeups
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sdcard.v
219 lines (197 loc) · 6.32 KB
/
sdcard.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
`timescale 1ns / 1ps
// memory mapped SPI mode SD card driver
//
// 3.3V ----+++ wp
// ||| +---- =-----
// RRR =8
// MISO(SD_DAT[0]) --|||---------=7
// ||| GND ---=6
// SCLK(SD_CLK) --||+---------=5
// || VCC ---=4
// || GND ---=3
// MOSI(SD_CMD) --|+----------=2
// CS(SD_DAT[3]) --+-----------=1
// +=9
// +-------
//
// *addresses have already x4
// read/write 0x0000 to 0x01fc: 128*32 block cache
// read/write 0x1000: get/set <address> for R/W, auto 512 aligned (may lost changes)
// write 0x1004: do a read at <address> (may lost changes)
// write 0x1008: do a write to <address>
// read 0x2000: negative card detect
// read 0x2004: write protected
// read 0x2010: ready, used for polling
// read 0x2014: dirty?
// TODO: ready/rd for cache!
module sdcard
(
input clk,
//input clk_slow,
input rst,
input sd_dat0,
input sd_ncd,
output sd_dat1,
output sd_dat2,
output sd_dat3,
output sd_cmd,
output sd_sck,
// SD_DAT[2] and SD_DAT[1] high, SD_RESET low
// memory interface
input [15:0]a,
input [31:0]d,
input we,
output [31:0]spo,
output reg irq = 0
);
reg [31:0]regspo;
wire [31:0]data = {d[7:0], d[15:8], d[23:16], d[31:24]};
//wire [31:0]data = d;
assign spo = regspo;
//assign spo = {regspo[7:0], regspo[15:8], regspo[23:16], regspo[31:24]};
// slow clock
reg [5:0]clkcounter = 0;
always @ (posedge clk) begin
if (rst) clkcounter <= 6'b0;
else clkcounter <= clkcounter + 1;
end
wire clk_pulse_slow = (clkcounter[5:0] == 6'b0);
assign sd_dat1 = 1;
assign sd_dat2 = 1;
//assign sd_reset = 0;
reg [31:0]sd_address = 32'hffffffff; // init as an invalid address
reg [31:0]block[127:0];
reg dirty = 0;
reg sd_rd = 0;
wire [7:0]sd_dout;
wire sd_readnext;
reg sd_wr = 0;
reg [7:0]sd_din = 0;
wire sd_writenext;
wire sd_ready;
wire [4:0]sd_status;
sd_controller sd_controller_inst
(
.clk(clk),
.clk_pulse_slow(clk_pulse_slow),
.reset(rst),
.cs(sd_dat3),
.mosi(sd_cmd),
.miso(sd_dat0),
.sclk(sd_sck),
.address(sd_address),
.rd(sd_rd),
.dout(sd_dout),
.byte_available(sd_readnext),
.wr(sd_wr),
.din(sd_din),
.ready_for_next_byte(sd_writenext),
.ready(sd_ready),
.status(sd_status)
);
// manual slow clock posedge detection
reg sd_ready_old = 0;
reg sd_readnext_old = 0;
reg sd_writenext_old = 0;
always @ (posedge clk) begin
sd_ready_old <= sd_ready;
sd_readnext_old <= sd_readnext;
sd_writenext_old <= sd_writenext;
end
wire sd_ready_posedge = !sd_ready_old & sd_ready;
wire sd_readnext_posedge = !sd_readnext_old & sd_readnext;
wire sd_writenext_posedge = !sd_writenext_old & sd_writenext;
wire sd_ready_real = sd_ready & !sd_rd & !sd_wr;
reg reading = 0;
reg writing = 0;
reg [9:0]counter = 0;
//wire [31:0]cache = block[counter[8:2]];
reg [7:0]cache1;
reg [7:0]cache2;
reg [7:0]cache3;
always @ (posedge clk) begin
if (rst) begin
sd_address <= 32'hffffffff;
dirty <= 0;
reading <= 0;
writing <= 0;
sd_rd <= 0;
sd_wr <= 0;
end
else begin
if (sd_ready_real) begin
if (we) begin
case (a[15:0])
// pay attention to endian here
16'h1000: sd_address <= data;
16'h1004: sd_rd <= data[0];
16'h1008: sd_wr <= data[0];
default: ;
endcase
end
// send/receive data has finished
reading <= 0;
writing <= 0;
end
else begin
// sdcard has received signal and not IDLE
// so we can stop rd/wr signals
// and prepare to send/receive data
if (sd_rd & !sd_ready) begin
sd_rd <= 0;
reading <= 1; counter <= 0;
end
else if (sd_wr & !sd_ready) begin
sd_wr <= 0;
writing <= 1; counter <= 0;
dirty <= 0;
end
end
if (reading & sd_readnext_posedge) begin
case (counter[1:0])
2'b00: cache1 <= sd_dout;
2'b01: cache2 <= sd_dout;
2'b10: cache3 <= sd_dout;
2'b11: block[counter[8:2]] <= {cache1, cache2, cache3, sd_dout};
endcase
counter <= counter + 1;
end
else if (writing & sd_writenext_posedge) begin
case (counter[1:0])
2'b00: sd_din <= blockcounterspo[31:24];
2'b01: sd_din <= blockcounterspo[23:16];
2'b10: sd_din <= blockcounterspo[15:8];
2'b11: sd_din <= blockcounterspo[7:0];
endcase
counter <= counter + 1;
end
else if (we) begin
if (a[15:12] == 0) begin
block[a[8:2]] <= d; // pay attention to endian here
dirty <= 1;
end
end
end
end
// handle non-relevant control address reading
// TODO: fix this
reg [31:0]blockaspo;
reg [31:0]blockcounterspo;
always @ (*) begin
if (a[15:12] == 0) blockaspo <= block[a[8:2]];
blockcounterspo <= block[counter[8:2]];
end
always @ (*) begin
regspo = 0;
if (a[15:12] == 0) regspo = blockaspo;
else case (a[15:0])
16'h1000: regspo = {sd_address[7:0], sd_address[15:8], sd_address[23:16], sd_address[31:24]};
16'h2000: regspo = {7'b0, sd_ncd, 24'b0};
16'h2010: regspo = {7'b0, sd_ready_real, 24'b0};
16'h2014: regspo = {7'b0, dirty, 24'b0};
default: ;
endcase
end
// interrupt when ready
//assign irq = sd_ready_posedge;
endmodule